Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data Source
Data | Data Type | Data Source |
---|---|---|
Population (2010–2020) | Table | Guangdong Statistical Yearbook (2010—2020) |
GDP (2010–2020) | Table | |
Annual Average Temperature (2010–2020) | Table | National Climate Data Center of China |
Annual Average Precipitation (2010–2020) | Table | |
Land Use (2010, 2020) | Raster | GlobeLand30: Global Geo-information Public Product (https://web.archive.org/web/20230605074258/http://globallandcover.com/home.html, accessed on 25 September 2024) |
GDP (2021–2050) | Table | Nanjing University [40] |
Population (2021–2050) | Table | Tsinghua University [41] |
Digital Elevation Model | Raster | Geospatial Data Cloud |
Soil Type | Raster | Chinese Resources and Environment Science and Data Center |
Water System Network | shapefile | OpenStreetMap (https://www.openhistoricalmap.org/, accessed on 25 September 2024) |
Road Network | shapefile | |
Remote Sensing Image | Raster | Geospatial Data Cloud |
2.2. Methodology
2.2.1. Land Use Prediction Model
- (1)
- Scenario
- (2)
- System Dynamics Model
- (3)
- Future land use simulation model
2.2.2. XGBoost Model
- (1)
- Assume a given data set, where there is a sample number, a sample feature, the determination that a function can estimate the dependent variable from the input variable, and assignment of the number of iterations. The formula is as follows:
3. Results
3.1. The Results of Future Urbanization
3.1.1. SSP1-2.6
3.1.2. SSP2-4.5
3.1.3. SSP5-8.5
3.2. The Results of Urban Waterlogging
3.2.1. Model Performance
3.2.2. Urban Flood Susceptibility
4. Discussion
4.1. Analysis of Future Urbanization Trends
4.2. Analysis of Urban Flood Susceptibility Changes
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, H.C.; Pang, B.; Zhao, G.; Yu, H.J.; Tian, P.N.; Xie, C.R. Incorporating dynamic drainage supervision into deep learning for accurate real-time flood simulation in urban areas. Water Res. 2025, 270, 122816. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.Q.; Shen, Y.F.; Xue, F.C.; Yan, X.; Qin, Y.W.; Yang, T.; Yang, G.; Wang, Q.J. DSC-YOLOv8n: An advanced automatic detection algorithm for urban flood levels. J. Hydrol. 2024, 643, 132028. [Google Scholar] [CrossRef]
- Yin, D.K.; Zhang, X.Y.; Cheng, Y.H.; Jia, H.F.; Jia, Q.M.; Yang, Y. Can flood resilience of green-grey-blue system cope with future uncertainty? Water Res. 2023, 242, 120315. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Karmakar, S.; PaiMazumder, D.; Ghosh, S.; Niyogi, D. Urbanization alters rainfall extremes over the contiguous United States. Environ. Res. Lett. 2020, 15, 074033. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, X.T.; Tang, J.Y.; Yang, L.; Wang, J.; Xu, Y.P. Climate feedbacks associated with land-use and land-cover change on hydrological extremes over the Yangtze River Delta Region, China. J. Hydrol. 2023, 623, 129855. [Google Scholar] [CrossRef]
- Yang, Z.; Burn, D.H. Automatic feature selection and weighting for the formation of homogeneous groups for regional IDF estimation. J. Hydrol. 2019, 575, 292–307. [Google Scholar] [CrossRef]
- Qiao, M.L.; Haraguchi, M.; Lall, U. Enhancing urban resilience to extreme weather: The roles of human transition paths among multiple transportation modes. Int. J. Geogr. Inf. Sci. 2024, 1–20. [Google Scholar] [CrossRef]
- Anni, A.H.; Cohen, S.; Praskievicz, S. Sensitivity of urban flood simulations to stormwater infrastructure and soil infiltration. J. Hydrol. 2020, 588, 125028. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Park, S.; Kang, J. Enhancing water management and urban flood resilience using Hazard Capacity Factor Design (HCFD) model: Case study of Eco-Delta city, Busan. Sustain. Cities Soc. 2024, 115, 105851. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.B.; Zhang, Y.H. An urban system perspective on urban flood resilience using SEM: Evidence from Nanjing city, China. Nat. Hazards 2021, 109, 2575–2599. [Google Scholar] [CrossRef]
- Zheng, J.X.; Chen, X.; Kawaike, K.; Yamanoi, K.; Koshiba, T.; Huang, G.R. Response of urban flood resilience to climate change: An exploration with a novel performance-based metric considering the socioeconomic impacts of damage costs. J. Hydrol. 2024, 645, 132260. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhang, H.; Chen, W.J.; Huang, G.R. Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways. Sci. Total Environ. 2021, 762, 143144. [Google Scholar] [CrossRef] [PubMed]
- Jodar-Abellan, A.; Valdes-Abellan, J.; Pla, C.; Gomariz-Castillo, F. Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Sci. Total Environ. 2019, 657, 1578–1591. [Google Scholar] [CrossRef]
- Miguez, M.G.; Rezende, O.M.; Veról, A.P. City Growth and Urban Drainage Alternatives: Sustainability Challenge. J. Urban Plan. Dev. 2015, 141, 04014026. [Google Scholar] [CrossRef]
- Huong, H.T.L.; Pathirana, A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci. 2013, 17, 379–394. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.; Zhang, Y.; Su, J.; Zhou, S.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 104436. [Google Scholar] [CrossRef]
- Prana, A.M.; Dionisio, R.; Curl, A.; Hart, D.; Gomez, C.; Apriyanto, H.; Prasetya, H. Informal adaptation to flooding in North Jakarta, Indonesia. Prog. Plan. 2024, 186, 100851. [Google Scholar] [CrossRef]
- Sado-Inamura, Y.; Fukushi, K. Empirical analysis of flood risk perception using historical data in Tokyo. Land Use Policy 2019, 82, 13–29. [Google Scholar] [CrossRef]
- Xu, H.S.; Ma, C.; Lian, J.J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Tang, X.; Hong, H.; Shu, Y.; Tang, H.; Li, J.; Liu, W. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. J. Hydrol. 2019, 576, 583–595. [Google Scholar] [CrossRef]
- Mohanty, M.P.; Vittal, H.; Yadav, V.; Ghosh, S.; Rao, G.S.; Karmakar, S. A new bivariate risk classifier for flood management considering hazard and socio-economic dimensions. J. Environ. Manag. 2020, 255, 109733. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Huang, G.R.; Chen, W.J. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models. J. Environ. Manag. 2021, 293, 112810. [Google Scholar] [CrossRef]
- Khan, T.A.; Shahid, Z.; Alam, M.; Su’ud, M.M.; Kadir, K.; IEEE. Early Flood Risk Assessment using Machine Learning: A Comparative study of SVM, Q-SVM, K-NN and LDA. In Proceedings of the 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Karachi, Pakistan, 14–15 December 2019. [Google Scholar]
- Zhang, S.H.; Pan, B.Z. An urban storm-inundation simulation method based on GIS. J. Hydrol. 2014, 517, 260–268. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Wetland conversion risk assessment of East Kolkata Wetland: A Ramsar site using random forest and support vector machine model. J. Clean. Prod. 2020, 275, 123475. [Google Scholar] [CrossRef]
- Tang, X.Z.; Shu, Y.Q.; Liu, W.; Li, J.F.; Liu, M.N.; Yu, H.F. An Optimized Weighted Naive Bayes Method for Flood Risk Assessment. Risk Anal. 2021, 41, 2301–2321. [Google Scholar] [CrossRef]
- Seleem, O.; Ayzel, G.; de Souza, A.C.T.; Bronstert, A.; Heistermann, M. Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany. Geomat. Nat. Hazards Risk 2022, 13, 1640–1662. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Costanza, R.; Ruth, M. Using dynamic modeling to scope environmental problems and build consensus. Environ. Manag. 1998, 22, 183–195. [Google Scholar] [CrossRef]
- Haghani, A.; Lee, S.Y.; Byun, J.H. A system dynamics approach to land use/transportation system performance modeling-Part I: Methodology. J. Adv. Transp. 2003, 37, 1–41. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Kosmas, C.; Vanacker, V.; van Oost, K.; Rounsevell, M. Soil erosion as a driver of land-use change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Wolf, J.; Bindraban, P.S.; Luijten, J.C.; Vleeshouwers, L.M. Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agric. Syst. 2003, 76, 841–861. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.P.; Gao, L.; Barrett, D.; Xu, T.B.; Li, L.Y.; Huang, C.; Yu, J. Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: A case study in Bowen Basin, Australia. Stoch. Environ. Res. Risk Assess. 2016, 30, 1575–1590. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, X.; Mao, Y.T.; Li, L.; Wang, X.R.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Schielein, J.; Miranda, J.; de Souza, R.A.; Boerner, J.; Henderson, J. The role of accessibility for land use and land cover change in the Brazilian Amazon. Appl. Geogr. 2021, 132, 102419. [Google Scholar] [CrossRef]
- Jing, C.; Su, B.D.; Zhai, J.Q.; Wang, Y.J.; Lin, Q.G.; Gao, M.N.; Jiang, S.; Chen, Z.Y.; Jiang, T. Gridded value-added of primary, secondary and tertiary industries in China under Shard Socioeconomic Pathways. Sci. Data 2022, 9, 309. [Google Scholar] [CrossRef]
- Wang, X.Y.; Meng, X.F.; Long, Y. Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Sci. Data 2022, 9, 563. [Google Scholar] [CrossRef]
- Chou, J.M.; Sun, M.Y.; Dong, W.J.; Zhao, W.X.; Li, J.N.; Li, Y.M.; Zhou, J.Y. Assessment and Prediction of Climate Risks in Three Major Urban Agglomerations of Eastern China. Sustainability 2021, 13, 13037. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 2021, 129, 107936. [Google Scholar] [CrossRef]
- Yuan, J.C.; Lin, Q.Y.; Chen, S.S.; Zhao, H.; Xie, X.; Cai, Z.Y.; Zhang, J.T.; Cheng, T.T.; Hua, M.; Zhang, R.H. Influence of global warming and urbanization on regional climate of Megacity: A case study of Chengdu, China. Urban Clim. 2022, 44, 101227. [Google Scholar] [CrossRef]
- Wei, H.B.; Zhang, L.Y.; Liu, J. Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou. Int. J. Environ. Res. Public Health 2022, 19, 14630. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H.; Lassaletta, L.; Gernaat, D.; Hermans, K.; Harmsen, M.; Daioglou, V.; Biemans, H.; et al. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change-Hum. Policy Dimens. 2018, 48, 119–135. [Google Scholar] [CrossRef]
- He, S.T.; Wang, D.J.; Zhao, P.; Chen, W.L.; Li, Y.; Chen, X.Q.; Jamali, A.A. Dynamic simulation of debris flow waste-shoal land use based on an integrated system dynamics-geographic information systems model. Land Degrad. Dev. 2022, 33, 2062–2075. [Google Scholar] [CrossRef]
- Wang, M.; Chen, F.R.; Zhang, D.Q.; Chen, Z.J.; Su, J.; Zhou, S.Q.; Li, J.J.; Chen, J.T.; Li, J.Y.; Tan, S.K. Data-driven approach to spatiotemporal dynamic risk assessment of urban flooding based on shared socio-economic pathways. Ecol. Indic. 2023, 154, 110764. [Google Scholar] [CrossRef]
- Yamashita, Y.; Sugawa, S. Power Efficiency Figure of Merit for Image Sensors. Ieee Trans. Electron Devices 2019, 66, 512–517. [Google Scholar] [CrossRef]
- Sui, C.H.; Tian, Y.; Xu, Y.P.; Xie, Y. Unsupervised Band Selection by Integrating the Overall Accuracy and Redundancy. IEEE Geosci. Remote Sens. Lett. 2015, 12, 185–189. [Google Scholar]
- Zhou, S.; Liu, Z.; Wang, M.; Gan, W.; Zhao, Z.; Wu, Z. Impacts of building configurations on urban stormwater management at a block scale using XGBoost. Sustain. Cities Soc. 2022, 87, 104235. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Ikram, R.M.A.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Chen, F.; Liu, M.; Zhou, S.; Su, J.; Tan, S.K. Assessing urban flooding risk in response to climate change and urbanization based on shared socio-economic pathways. Sci. Total Environ. 2023, 880, 163470. [Google Scholar] [CrossRef] [PubMed]
- Halecki, W.; Mlynski, D. Urban flood dilemmas: How European cities growth shapes flood risk and resilience strategies? J. Environ. Manag. 2025, 374, 124161. [Google Scholar] [CrossRef]
- Seleem, O.; Heistermann, M.; Bronstert, A. Efficient Hazard Assessment for Pluvial Floods in Urban Environments: A Benchmarking Case Study for the City of Berlin, Germany. Water 2021, 13, 2476. [Google Scholar] [CrossRef]
Class | Very Low | Low | Medium | High | Very High | |||||
---|---|---|---|---|---|---|---|---|---|---|
Risk range | 0–0.03 | 0.03–0.2 | 0.20–0.45 | 0.45–0.8 | >0.8 | |||||
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
SSP126-2030 | 2907.57 | 0.44 | 1570.85 | 0.24 | 883.14 | 0.13 | 777.04 | 0.12 | 505.86 | 0.08 |
SSP245-2030 | 2788.56 | 0.42 | 1402.35 | 0.21 | 993.11 | 0.15 | 873.43 | 0.13 | 587.01 | 0.09 |
SSP585-2030 | 2504.86 | 0.38 | 1250.39 | 0.19 | 1082.28 | 0.16 | 1056.47 | 0.16 | 750.45 | 0.11 |
SSP126-2040 | 2714.17 | 0.41 | 1355.51 | 0.20 | 985.80 | 0.15 | 926.31 | 0.14 | 662.67 | 0.10 |
SSP245-2040 | 2460.62 | 0.37 | 1245.79 | 0.19 | 1094.01 | 0.16 | 1047.62 | 0.16 | 796.42 | 0.12 |
SSP585-2040 | 1961.45 | 0.30 | 1176.11 | 0.18 | 1257.48 | 0.19 | 1285.37 | 0.19 | 964.05 | 0.15 |
SSP126-2050 | 2650.45 | 0.40 | 1197.38 | 0.18 | 1010.50 | 0.15 | 1014.67 | 0.15 | 771.46 | 0.12 |
SSP245-2050 | 2126.36 | 0.32 | 1185.92 | 0.18 | 1180.55 | 0.18 | 1225.10 | 0.18 | 926.53 | 0.14 |
SSP585-2050 | 1821.13 | 0.27 | 1134.08 | 0.17 | 1287.91 | 0.19 | 1355.95 | 0.20 | 1045.38 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Xue, F.; Liu, Y.; Chen, F.; Yang, H. Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways. Land 2025, 14, 621. https://doi.org/10.3390/land14030621
Fu X, Xue F, Liu Y, Chen F, Yang H. Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways. Land. 2025; 14(3):621. https://doi.org/10.3390/land14030621
Chicago/Turabian StyleFu, Xiaoping, Fangyan Xue, Yunan Liu, Furong Chen, and Hao Yang. 2025. "Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways" Land 14, no. 3: 621. https://doi.org/10.3390/land14030621
APA StyleFu, X., Xue, F., Liu, Y., Chen, F., & Yang, H. (2025). Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways. Land, 14(3), 621. https://doi.org/10.3390/land14030621