Dynamics of Ecosystem Services Driven by Land Use Change Under Natural and Anthropogenic Driving Trajectories in the Kaduna River Basin, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Materials
2.2. Modeling and Mapping Ecosystem Services
- (1)
- Carbon storage.
- (2)
- Water yield.
- (3)
- Habitat quality.
2.3. Mapping Continuous Land Use Change and Driving Process Trajectories
3. Results
3.1. Changes in the Spatial Distribution of Land Use
3.2. Land Use Change Trajectories and Corresponding Driving Processes
3.3. Spatiotemporal Dynamic Analysis of Ecosystem Services
- (1)
- Carbon storage.
- (2)
- Water yield.
- (3)
- Habitat quality.
4. Discussion
4.1. Driving Process Trajectories Under Natural and Anthropogenic Loads
4.2. Gain or Loss of Ecosystem Services Under the Driving Process
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, S.; Kumar, P.; Chen, R.; Meadows, M.E. Nanjing University Remote Sensing Assessment of the Impact of Land Use and Land Cover Change on the Environment of Barddhaman District, West Bengal, India. Front. Environ. Sci. 2020, 8, 127. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Z.X.; Zhang, S.W.; Yan, C.Z.; Wu, S.X.; Li, R.D.; Kuang, W.H.; Shi, W.J.; Huang, L.; Ning, J.; et al. Review and prospect of remote sensing research on land use change in China: Based on the guidance of Peng’s academic thought. J. Geo-Inf. Sci. 2020, 22, 680–687. [Google Scholar]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar]
- Rawart, J.S.; Biswas, V.; Kumar, M. Changes in land use/cover using geospatial techniques.: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111–117. [Google Scholar]
- Aryal, K.; Maraseni, T.; Apan, A. Transforming agroforestry in contested landscapes: A win-win solution to trade-offs in ecosystem services in Nepal. Sci. Total Environ. 2022, 857, 159301. [Google Scholar]
- Grafius, D.; Corstanje, R.; Harris, J. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 2018, 33, 557–573. [Google Scholar] [CrossRef] [PubMed]
- Sankhala, S.; Singh, B. Evaluation of urban sprawl and land use/land cover change using Remote sensing and GIS techniques: A case study of Jaipur City, India. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 66–72. [Google Scholar]
- Ma, T.T.; Li, X.W.; Bai, J.H.; Cui, B.S. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 2019, 30, 799–810. [Google Scholar]
- Tadesse, A.; Tolossa, D.; Tsehaye, S.; Yayeh, D. Dynamics of land use and land cover changes in Amibara and Awash-fentale districts, Ethiopia. Remote Sens. Appl. Soc. Environ. 2024, 36, 101315. [Google Scholar]
- Ologunde, O.H.; Kelani, M.O.; Biru, M.K.; Olayemi, A.B.; Nunes, M.R. Land Use and Land Cover Changes: A Case Study in Nigeria. Land. 2025, 14, 389. [Google Scholar]
- Cheruto, M.C.; Kauti, M.K.; Kisangau, P.D.; Kariuki, P.C. Assessment of land use and Land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. Journal of Remote Sensing. GIS 2016, 5, 175. [Google Scholar]
- Liu, H.; Shu, C.; Zhou, T.T.; Liu, P. Trade-off and synergy relationships of ecosystem services and driving force analysis based on land cover change in Altay Prefecture. J. Resour. Ecol. 2021, 12, 777–790. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change-Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Stammel, B.; Fischer, C.; Cyffka, B.; Albert, C.; Damm, C.; Dehnhardt, A.; Fischer, H.; Foeckler, F.; Gerstner, L.; Hoffmann, T.G.; et al. Assessing land use and flood management impacts on ecosystem services in a river landscape (Upper Danube, Germany). River Res. Appl. 2020, 37, 209–220. [Google Scholar] [CrossRef]
- Fox, C.A. River Basin Development. In International Encyclopedia of Human Geography, 2nd ed.; Elsevier: Oxford, UK, 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Ma, T.T.; Li, X.W.; Bai, J.H.; Ding, S.Y.; Zhou, F.W.; Cui, B.S. Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Sci. Total Environ. 2019, 655, 741–750. [Google Scholar]
- Mallinis, G.; Koutsias, N.; Arianoutsou, M. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Sci. Total Environ. 2014, 490, 262–278. [Google Scholar] [CrossRef]
- Teixeira, Z.; Teixeira, H.; Marques, J.C. Systematic processes of land use/land cover change to identify relevant driving forces: Implications on water quality. Sci. Total Environ. 2014, 470–471, 1320–1335. [Google Scholar]
- Bhomia, R.K.; Van Lent, J.; Rios, J.M.G.; Hergoualc’h, K.; Coronado, E.N.H.; Murdiyarso, D. Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Maranon river basin of the Peruvian Amazon. Mitig. Adapt. Strateg. Glob. Change 2019, 24, 645–668. [Google Scholar]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.N.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [PubMed]
- Quintero-Gallego, M.E.; Quintero-Angel, M.; Vila-Ortega, J.J. Exploring land use/land cover change and drivers in Andean mountains in Colombia: A case in rural Quindio. Sci. Total Environ. 2018, 634, 1288–1299. [Google Scholar]
- Meng, C.; Liu, H.; Li, Y.; Wang, Y.; Li, X.; Shen, J.L.; Gong, D.L.; Zhang, M.M.; Wu, J.S. Landscape patterns of catchment and land-use regulate legacy phosphorus releases in subtropical mixed agricultural and woodland catchments. Sci. Total Environ. 2022, 804, 150055. [Google Scholar]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land Use Policy 2023, 125, 106463. [Google Scholar]
- Zhi, L.H.; Ma, T.T.; Gao, Y.; Li, X.W.; Shao, D.D.; Guo, W.H.; Cui, B.S. Human-natural coupling driving processes for spatiotemporal dynamics of coastal wetlands under reclamation. Acta Ecol. Sin. 2024, 44, 9626–9635. [Google Scholar]
- Hietel, E.; Waldhardt, R.; Otte, A. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landsc. Ecol. 2004, 19, 473–489. [Google Scholar]
- Xystrakis, F.; Psarras, T.; Koutsias, N. A process-based land use/land cover change assessment on a mountainous area of Greece during 1945–2009: Signs of socio-economic drivers. Sci. Total Environ. 2017, 587–588, 360–370. [Google Scholar]
- Tiwari, M.K.; Saxena, A. Change Detection of Land Use/Landcover Pattern in an round Mandideep and Obedullaganj Area, using Remote Sensing and GIS. Int. J. Imaging Syst. Technol. 2011, 2, 398–402. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar]
- Ebenezer, P.A.; Kavitha, A.R. A Review on Use of Land Metrics in Land Use and Land Cover. In Proceedings of the 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2–4 December 2021; pp. 320–325. [Google Scholar]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar]
- Minta, M.; Kibret, K.; Thorne, P.; Nigussie, T.; Nigatu, L. Land use and land cover dynamics in Dendi-Jeldu hilly-mountainous areas in the central Ethiopian highlands. Geoderma 2018, 314, 27–36. [Google Scholar] [CrossRef]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Trajectory analysis of land use and land cover maps to improve spatial-temporal patterns, and impact assessment on groundwater recharge. J. Hydrol. 2017, 554, 558–569. [Google Scholar] [CrossRef]
- Davis, J.L.; Currin, C.A.; O’Brien, C.; Raffenburg, C.; Davis, A. Living shorelines: Coastal resilience with a blue carbon benefit. PLoS ONE 2015, 10, e0142595. [Google Scholar] [CrossRef] [PubMed]
- Rukundo, E.; Liu, S.; Dong, Y.; Rutebuka, E.; Asamoah, E.F.; Xu, J.W.; Wu, X. Spatiotemporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecol. Indic. 2018, 89, 696–705. [Google Scholar] [CrossRef]
- Wang, C.D.; Li, X.; Yu, H.J.; Wang, Y.T. Tracing the spatial variation and value change of ecosystem services in Yellow River Delta, China. Ecol. Indic. 2019, 96, 270–277. [Google Scholar] [CrossRef]
- De Rosa, M.; Odgaard, M.V.; Staunstrup, J.K.; Staunstrup, J.K.; Hermansen, J.E. Identifying land use and land-use changes (LULUC): A Global LULUC Matrix. Environ. Sci. Technol. 2017, 51, 7954–7962. [Google Scholar] [CrossRef]
- Awotwi, A.; Anornu, G.K.; Quaye-Ballard, J.A.; Annor, T. Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986–2025. Land Degrad. Dev. 2018, 29, 3331–3343. [Google Scholar] [CrossRef]
- El Gammal, E.A.; Salem, S.M.; El Gammal, A.E.A. Change detection studies on the world’s biggest artificial lake (Lake Nasser, Egypt). Egypt. J. Remote Sens. Space Sci. 2010, 13, 89–99. [Google Scholar] [CrossRef]
- Akinyemi, F.O. Land change in the central Albertine rift: Insights from analysis and mapping of land use-land cover change in north-western Rwanda. Appl. Geogr. 2017, 87, 127–138. [Google Scholar] [CrossRef]
- Okeleye, S.O.; Okhimamhe, A.A.; Sanfo, S.; Fürst, C. Impacts of Land Use and Land Cover Changes on Migration and Food Security of North Central Region, Nigeria. Land 2023, 12, 1012. [Google Scholar] [CrossRef]
- Awoniran, D.R.; Adewole, M.B.; Adegboyega, S.A. Assessment of environmental responses to land use/land cover dynamics in the Lower Ogun River Basin, Southwestern Nigeria. Afr. J. Environ. Sci. Technol. 2014, 8, 152–165. [Google Scholar] [CrossRef]
- Fasona, M.; Adeonipekun, P.A.; Agboola, O.; Akintuyi, A.; Anifowose, Y.; Bello, A.; Ogundipe, O.; Soneye, A.; Omojola, A. Incentives for collaborative governance of natural resources: A case study of forest management in southwest Nigeria. Environ. Dev. 2019, 30, 76–88. [Google Scholar]
- Odiji, C.A.; Ahmad, H.S.; Adepoju, M.O.; Odia, B.; Hamza, D.D.; Akpabio, W.E. Analysis and prediction of land use/land cover changes and its impacts on the corridors of cattle grazing routes in Benue state, Nigeria. Geol. Ecol. Landsc. 2022, 8, 498–512. [Google Scholar]
- Durowoju, O.S.; Ologunorisa, T.E.; Akinbobola, A. Assessing agricultural and hydrological drought vulnerability in a savanna ecological zone of Sub-Saharan Africa. Nat. Hazards 2022, 111, 2431–2458. [Google Scholar]
- Jo, F.; Garba, S.J.a.; Ao, A.A. comparison of ANFIS and ANN-based models in river discharge forecasting. New Ground Res. J. Phys. Sci. 2014, 1, 1–16. [Google Scholar]
- Mu, Y.L.; Guo, Y.; Li, X.W.; Li, P.; Bai, J.H.; Linke, S.; Cui, B.S. Cost-effective integrated conservation and restoration priorities by trading off multiple ecosystem services. J. Environ. Manag. 2022, 320, 115915. [Google Scholar] [CrossRef] [PubMed]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Ravilious, C.; Kapos, V.; Osti, M.; Bertzky, M.; Bayliss, J.L.; Dahiru, S.; Dickson, B. Carbon, biodiversity and ecosystem services: Exploring co-benefits. In Nigeria: Preliminary Results; UNEP-WCMC: Cambridge, UK, 2010. [Google Scholar]
- Chen, C.; Liu, J.; Bi, L. Spatial and temporal changes of habitat quality and its influential factors in China based on the InVEST model. Forests 2023, 14, 374. [Google Scholar] [CrossRef]
- Zhi, L.H.; Zhou, F.W.; Li, X.W.; Ma, T.T.; Shao, D.D.; Bai, J.H.; Cui, B.S.; Guo, W.H. Maximal multiple ecosystem services for coastal wetlands by integrating their conservation and restoration pattern in the Yellow River Delta, China. J. Nat. Resour. 2023, 38, 3150–3165. [Google Scholar] [CrossRef]
- Swift, M.J.; Izac, A.N.; Van Noordwijk, M. Biodiversity and ecosystem services in farmlandscapes—Are we asking the right questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Petermann, J.S.; Buzhdygan, O.Y. Grassland biodiversity. Curr. Biol. 2021, 31, R1195–R1201. [Google Scholar] [PubMed]
- Bianchi, T.S.; Allison, M.A. Large-river delta-front estuaries as natural "recorders" of global environmental change. Proc. Natl. Acad. Sci. USA 2009, 106, 8085–8092. [Google Scholar] [PubMed]
- Kim, W. Geomorphology flood-built land. Nat. Geosci. 2012, 5, 521–522. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar]
- Alegbeleye, O.M.; Rotimi, Y.O.; Shomide, P.; Oyediran, A.; Ogundipe, O.; Akintunde-Alo, A. Land use land cover (LULC) analysis in Nigeria: A systematic review of data, methods, and platforms with future prospects. Bull. Natl. Res. Cent. 2024, 48, 127. [Google Scholar]
- Muhammad, L.A.; Auwal, F.A. Geospatial analysis of land use changes and wetland dynamics in Kaduna Metropolis, Kaduna, Nigeria. Sci. World J. 2024, 19, 687–696. [Google Scholar]
- Jew, E.K.K.; Dougill, A.J.; Sallu, S.M. Tobacco cultivation as a driver of land use change and degradation in the miombo woodlands of south-west Tanzania. Land Degrad. Dev. 2017, 28, 2636–2645. [Google Scholar]
- Braun, D.; Damm, A.; Hein, L.; Petchey, O.L.; Schaepman, M.E. Spatio-temporal trends and trade-offs in ecosystem services: An Earth observation based assessment for Switzerland between 2004 and 2014. Ecol. Indic. 2018, 89, 828–839. [Google Scholar]
- Wang, D.C.; Gong, J.H.; Chen, L.D.; Zhang, L.H.; Song, Y.Q.; Yue, Y.J. Comparative analysis of land use/cover change trajectories and their driving forces in two small watersheds in the western Loess Plateau of China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 241–252. [Google Scholar]
Code | Land Use Type | Cabove (t/hm2) | Cbelow (t/hm2) | Csoil (t/hm2) | Cdead (t/hm2) |
---|---|---|---|---|---|
1 | Farmland | 20 | 8.5 | 50.23 | 13.95 |
2 | Bare soil | 0 | 1 | 17.7 | 0 |
3 | Grassland | 17.31 | 4.07 | 23.6 | 13.95 |
4 | Forest | 118.19 | 27.77 | 93.62 | 9.65 |
5 | Wetland | 10 | 23.4 | 19.8 | 0 |
6 | Constructed land | 0 | 0 | 7 | 0 |
Threat Factor | Maximum Threat Distance (m) | Weight | Decay |
---|---|---|---|
Farmland | 4 | 0.7 | line |
Constructed land | 8 | 0.9 | exponential |
Code | Land Use Type | Habitat Suitability | Habitat Sensitivity Parameters | |
---|---|---|---|---|
Farmland | Constructed Land | |||
1 | Farmland | 0.5 | 0.56 | 0.72 |
2 | Bare soil | 0.3 | 0.21 | 0.27 |
3 | Grassland | 0.8 | 0.7 | 0.9 |
4 | Forest | 0.6 | 0.14 | 0.18 |
5 | Wetland | 0.6 | 0.42 | 0.54 |
6 | Constructed land | 0 | 0 | 0 |
Driving Process | Land Use Change | Description of the Process | Driving Process Properties |
---|---|---|---|
Succession (S) | 2–3, 2–4, 2–5, 3–4, 3–5, 5–4 | Evolve from simple ecosystems to complex ecosystems | Natural |
Reverse succession (Rs) | 3–2, 4–2, 4–3, 4–5, 5–2, 5–3 | Evolve from complex ecosystems to simple ecosystems | Natural |
Restoration (Re) | 1–2, 1–3, 1–4, 1–5, 6–1, 6–2, 6–3, 6–4, 6–5 | Restoration of land abandoned after reclamation and development | Natural and Anthropogenic |
Reclamation (Rc) | 2–1, 3–1, 4–1, 5–1 | Natural lands are developed by humans into farm land | Anthropogenic |
Urbanization (U) | 1–6, 2–6, 3–6, 4–6, 5–6 | Human exploitation of the land | Anthropogenic |
Unchanged (No) | The land class has not changed |
Year | Land Use Type Area (km2) and Proportion (%) | |||||
---|---|---|---|---|---|---|
Farmland | Bare Soil | Grassland | Forest | Wetland | Constructed Land | |
2000 | 21,915 | 14,755 | 27,149 | 3427 | 772 | 528 |
31.97% | 21.53% | 39.61% | 5.00% | 1.13% | 0.77% | |
2010 | 26,473 | 7270 | 27,799 | 5261 | 810 | 933 |
38.62% | 10.61% | 40.56% | 7.68% | 1.18% | 1.36% | |
2020 | 35,291 | 6350 | 21,540 | 3906 | 689 | 770 |
51.49% | 9.26% | 31.42% | 5.70% | 1.00% | 1.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, L.; Abdullahi, U.; Zhang, Q.; Wang, X.; Li, X. Dynamics of Ecosystem Services Driven by Land Use Change Under Natural and Anthropogenic Driving Trajectories in the Kaduna River Basin, Nigeria. Land 2025, 14, 706. https://doi.org/10.3390/land14040706
Zhi L, Abdullahi U, Zhang Q, Wang X, Li X. Dynamics of Ecosystem Services Driven by Land Use Change Under Natural and Anthropogenic Driving Trajectories in the Kaduna River Basin, Nigeria. Land. 2025; 14(4):706. https://doi.org/10.3390/land14040706
Chicago/Turabian StyleZhi, Liehui, Usman Abdullahi, Qingyue Zhang, Xin Wang, and Xiaowen Li. 2025. "Dynamics of Ecosystem Services Driven by Land Use Change Under Natural and Anthropogenic Driving Trajectories in the Kaduna River Basin, Nigeria" Land 14, no. 4: 706. https://doi.org/10.3390/land14040706
APA StyleZhi, L., Abdullahi, U., Zhang, Q., Wang, X., & Li, X. (2025). Dynamics of Ecosystem Services Driven by Land Use Change Under Natural and Anthropogenic Driving Trajectories in the Kaduna River Basin, Nigeria. Land, 14(4), 706. https://doi.org/10.3390/land14040706