Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area
Abstract
:1. Introduction
- To quantify and analyze the landscape pattern characteristics and urban expansion typologies of the GBA from 2000 to 2020, identifying the spatial distribution patterns of 2D urban morphology;
- To construct a 3D urban morphology database for the GBA based on the LCZ classification system, providing a detailed characterization of 3D urban morphology in the region;
- To explore the differential impacts of 2D and 3D urban morphology on LST, uncovering the multi-dimensional relationship between urban morphology and the thermal environment.
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Two-Dimensional and Three-Dimensional Urban Morphology Characteristics Analysis Methods
2.3.1. Analysis of 2D Urban Morphological Features
- Land Use Landscape Pattern Indices
- Quantitative analysis of land expansion Patterns
- Bivariate spatial autocorrelation analysis
2.3.2. Analysis of 3D Urban Morphological Features
- Delineation of Training Areas
- Supervised Classification
- Accuracy Assessment
2.4. Correlation and Spatial Clustering Analysis
2.5. Intergroup Difference Analysis
3. Results
3.1. Spatiotemporal Evolution Characteristics of LST
3.2. Spatial Correlation Between 2D Urban Morphology and LST
3.2.1. Cluster Analysis of Land Use Landscape Pattern and Its Correlation with LST
3.2.2. Cluster Analysis Results of Land Use Expansion Patterns and LST
3.3. Spatial Correlation Between 3D Urban Morphology and LST
3.3.1. LCZ Classification Results
3.3.2. Analysis Results of Inter-LCZ Group Differences in LST
4. Discussion
4.1. Spatial Correlation Between Land Use Landscape Patterns and LST
4.2. Spatial Correlation Between Land Use Expansion Patterns and LST
4.3. LCZ Spatial Distribution Patterns
4.4. The Impact Mechanisms of LCZ Spatial Morphology on the Thermal Environment
5. Conclusions
- (1)
- The impact of 2D urban morphology on LST was significant, especially as the fragmentation of built-up land had intensified the UHI effect. Between 2000 and 2020, the patch density of built-up land showed a significant positive correlation with LST, and the fragmentation trend of urban expansion exacerbated the UHI effect. The urban expansion model in the GBA shifted from outward expansion to infill expansion, significantly increasing building density and reducing ecological land area; this led to the spread of the UHI effect from the core cities to the surrounding areas. Core cities such as Guangzhou and Shenzhen saw significant increases in LSTs. This expansion pattern aligns with the “incremental expansion-stock update” development pattern of the GBA and reflects the far-reaching impact of high-intensity development on the regional thermal environment.
- (2)
- The impact of 3D urban morphology on LST was more complex. During the daytime, high-rise building clusters (LCZs 1–3) significantly reduced LSTs due to their solar-radiation-shading effects. In mid-density building clusters (LCZs 4–6), the ventilation spaces between buildings became crucial for LST regulation. At night, LCZ 6 (open low-rise) in mid-density areas exhibited higher LST s due to the thermal storage capacity of traditional materials such as concrete and brick and the formation of LST inversion layers from human activities.
- (3)
- For the high-density development characteristics of the GBA, we recommend optimizing the urban spatial structure by enhancing the connectivity of green infrastructure, particularly promoting vertical greening and green roofs in core urban areas. In addition, strict control over land reclamation and infill expansion should be enforced, protecting large, contiguous natural water bodies and woodlands to enhance their cooling effects. At the same time, improving urban ventilation corridors and promoting low-thermal capacity building materials can help mitigate the urban heat island effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar]
- Afrakhteh, R.; Asgarian, A.; Sakieh, Y.; Soffianian, A. Evaluating the strategy of integrated urban-rural planning system and analyzing its effects on land surface temperature in a rapidly developing region. Habitat Int. 2016, 56, 147–156. [Google Scholar]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, W.; He, T.; Shan, Z. Urban form centrality and thermal environment: An empirical study of Chinese megacities. Sustain. Cities Soc. 2022, 83, 103955. [Google Scholar]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [PubMed]
- Du, S.; Wu, Y.; Guo, L.; Fan, D.; Sun, W. How does the 2D/3D urban morphology affect the urban heat island across urban functional zones? A case study of Beijing, China. ISPRS Int. J. Geo-Inf. 2024, 13, 120. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, S.; Wong, N.H.; Ignatius, M.; Deng, J.; He, Y.; Hii, D.J.C. Empirical model of campus air temperature and urban morphology parameters based on field measurement and machine learning in Singapore. arXiv 2019, arXiv:1911.08822. [Google Scholar]
- Azhdari, A.; Soltani, A.; Alidadi, M. Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city. Sustain. Cities Soc. 2018, 41, 853–864. [Google Scholar]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Quantifying the seasonal cooling capacity of ‘green infrastructure types’(GITs): An approach to assess and mitigate surface urban heat island in Sydney, Australia. Landsc. Urban Plan. 2020, 203, 103893. [Google Scholar]
- Zhuang, Q.; Wu, S.; Yan, Y.; Niu, Y.; Yang, F.; Xie, C. Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin. Sci. Total Environ. 2020, 710, 136336. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Song, X.; Shao, G. Effects of green space patterns on urban thermal environment at multiple spatial–temporal scales. Sustainability 2020, 12, 6850. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Logan, T.M.; Zaitchik, B.; Guikema, S.; Nisbet, A. Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, W.; Du, P.; Li, L.; Li, J.; Liu, Z.; Xia, J. Seasonally disparate responses of surface thermal environment to 2D/3D urban morphology. Build. Environ. 2022, 214, 108928. [Google Scholar] [CrossRef]
- Rifat, S.A.A.; Liu, W. Quantifying spatiotemporal patterns and major explanatory factors of urban expansion in Miami metropolitan area during 1992–2016. Remote Sens. 2019, 11, 2493. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Wang, Z.; Zhang, H.; Gong, H. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Rao, Y.; Dai, J.; Dai, D.; He, Q. Effect of urban growth pattern on land surface temperature in China: A multi-scale landscape analysis of 338 cities. Land Use Policy 2021, 103, 105314. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, T.; Wang, L. Heat stress resilience assessment of urban form from physical space dimension: A case study of Guangdong-Hong Kong-Macao Greater Bay Area. Urban Clim. 2024, 55, 101905. [Google Scholar] [CrossRef]
- Zhang, L.; Nikolopoulou, M.; Guo, S.; Song, D. Impact of LCZs spatial pattern on urban heat island: A case study in Wuhan, China. Build. Environ. 2022, 226, 109785. [Google Scholar]
- Perera, N.G.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M. Multi-scale analysis of surface thermal environment in relation to urban form: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area. Sustain. Cities Soc. 2023, 99, 104953. [Google Scholar]
- Li, L.; Chan, P.W.; Deng, T.; Yang, H.L.; Luo, H.Y.; Xia, D.; He, Y.Q. Review of advances in urban climate study in the Guangdong-Hong Kong-Macau Greater Bay Area, China. Atmos. Res. 2021, 261, 105759. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Yang, K.; Li, M. Influence of spatiotemporal pattern changes of impervious surface of urban megaregion on thermal environment: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Ecol. Indic. 2021, 121, 107106. [Google Scholar]
- Wang, Y.; Yao, Y.; Chen, S.; Ni, Z.; Xia, B. Spatiotemporal evolution of urban development and surface urban heat island in Guangdong-Hong Kong-Macau greater bay area of China from 2013 to 2019. Resour. Conserv. Recycl. 2022, 179, 106063. [Google Scholar]
- Deng, X.; Gao, F.; Liao, S.; Liu, Y.; Chen, W. Spatiotemporal evolution patterns of urban heat island and its relationship with urbanization in Guangdong-Hong Kong-Macao greater bay area of China from 2000 to 2020. Ecol. Indic. 2023, 146, 109817. [Google Scholar]
- Wang, D.; Lau, K.K.L.; Ren, C.; Goggins, W.B.I.; Shi, Y.; Ho, H.C.; Ng, E. The impact of extremely hot weather events on all-cause mortality in a highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–2015). Sci. Total Environ. 2019, 690, 923–931. [Google Scholar] [PubMed]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; Volume 351. [Google Scholar]
- Kupfer, J.A. Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Prog. Phys. Geogr. 2012, 36, 400–420. [Google Scholar]
- Liu, X.; Ma, L.; Li, X.; Ai, B.; Li, S.; He, Z. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. Int. J. Geogr. Inf. Sci. 2014, 28, 148–163. [Google Scholar]
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar]
- Demuzere, M.; Hankey, S.; Mills, G.; Zhang, W.; Lu, T.; Bechtel, B. Combining expert and crowd-sourced training data to map urban form and functions for the continental US. Sci. Data 2020, 7, 264. [Google Scholar]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef] [PubMed]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Xu, Y. Generating WUDAPT Level 0 data–Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar]
- Verma, A.; Agrawal, S. Evaluating the natural cooling potential of waterbodies in dense urban landscape: A case study of Bengaluru, India. Urban Clim. 2024, 58, 102200. [Google Scholar]
- Massey, R.; Rogers, B.M.; Berner, L.T.; Cooperdock, S.; Mack, M.C.; Walker, X.J.; Goetz, S.J. Forest composition change and biophysical climate feedbacks across boreal North America. Nat. Clim. Chang. 2023, 13, 1368–1375. [Google Scholar]
- Yin, Y.; Li, S.; Xing, X.; Zhou, X.; Kang, Y.; Hu, Q.; Li, Y. Cooling benefits of urban tree canopy: A systematic review. Sustainability 2024, 16, 4955. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C.; Remedios, J.; Adamu, B.; Sobrino, J.A.; Weng, Q. A review on remote sensing of urban heat and cool islands. Land 2017, 6, 38. [Google Scholar] [CrossRef]
- Nugroho, N.Y.; Triyadi, S.; Wonorahardjo, S. Effect of high-rise buildings on the surrounding thermal environment. Build. Environ. 2022, 207, 108393. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, X.; Tian, W.; Wei, M.; Zhang, X.; Chen, Y. Investigating the mechanisms of sustainable urban land renewal: A perspective of spatial development rights. Sustain. Cities Soc. 2024, 109, 105536. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, Y.; Tan, X.; Wang, B.; Zhou, C.; Xiang, Y. Rational zoning and optimization of agricultural distribution in Guangdong Province based on resource carrying capacity. Acta Ecol. Sin. 2023, 43, 820–834. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Singh, V.P.; Wang, R. Impacts of spatial configuration of land surface features on land surface temperature across urban agglomerations, China. Remote Sens. 2021, 13, 4008. [Google Scholar] [CrossRef]
Landscape Pattern Indices | Meaning | Formula | Unit |
---|---|---|---|
PD | The number of landscape patches per unit area, reflecting the degree of landscape fragmentation. | unit, /km2 | |
AI | Reflecting how clustered or connected the patches are. | % | |
LPI | The proportion of the largest patch to the total landscape area for a specific type of landscape, reflecting the dominance of that landscape type. | % | |
ED | The ratio of the total perimeter of landscape patches to the landscape area, reflecting the shape of the landscape patches and edge effects. | m/hm2 | |
PLAND | The percentage of the total landscape area occupied by a specific type of landscape, reflecting the proportional abundance of that landscape type. | % |
Landscape Pattern Indices | Cropland | Woodland | Grassland | Water Bodies | Built-Up Land | |||||
---|---|---|---|---|---|---|---|---|---|---|
p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | |
PD | 0.770 ** | 0.336 (76.726) ** | 0.359 ** | 0.237 (58.534) | 0.767 ** | 0.144 (35.099) | 0.967 ** | 0.073 (18.619) | 1.001 ** | 0.248 (56.016) |
LPI | 0.323 ** | −0.281 (−65.842) ** | 0.117 ** | −0.157 (−39.015) | 0.127 * | −0.082 (−20.298) | 0.181 ** | 0.032 (8.183) | 0.105 * | −0.218 (−50.094) |
ED | −0.147 ** | 0.339 (77.517) ** | −0.022 | 0.195 (47.946) | −0.03 | 0.113 (27.663) | −0.107 * | 0.039 (9.865) | 0.148 ** | 0.237 (53.673) |
AI | 1.621 ** | −0.329 (−75.849) ** | 0.028 | −0.189 (−46.528) | −0.023 | −0.112 (−27.559) | −0.221 ** | −0.055 (13.981) | 0.292 ** | −0.223 (−50.376) |
PLAND | 0.004 ** | −0.195 (46.311) | 0.011 ** | 0.300 (70.938) | 0.014 | −0.069 (−16.956) | 0.026 ** | 0.325 (73.842) | 0.009 * | 0.146 (−36.333) |
Landscape Pattern Indices | Cropland | Woodland | Grassland | Water Bodies | Built-Up Land | |||||
---|---|---|---|---|---|---|---|---|---|---|
p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | |
PD | 0.929 ** | 0.353 (79.274) | 0.770 ** | 0.191 (47.217) | 0.614 ** | 0.140 (34.047) | 0.966 ** | 0.062 (15.963) | 0.657 ** | 0.256 (59.149) |
LPI | −0.021 | −0.304 (−67.685) | 0.323 ** | −0.132 (−32.615) | 0.098 | −0.092 (−22.548) | 0.175 ** | 0.032 (8.336) | 0.338 ** | −0.227 (−53.377) |
ED | 0.143 ** | 0.321 (70.994) | −0.147 ** | 0.159 (39.266) | 0.013 | 0.117 (28.709) | −0.097 * | 0.032 (8.361) | −0.119 * | 0.244 (56.389) |
AI | 0.395 ** | −0.311 (−69.273) | 1.621 ** | −0.157 (−38.891) | 0.019 | −0.116 (−28.430) | −0.204 * | −0.048 (−12.359) | 2.026 ** | −0.235 (−24.733) |
PLAND | −0.008 ** | −0.193 (−46.456) | 0.004 ** | 0.018 (4.329) | 0.032 | −0.076 (−18.683) | 0.0259 ** | 0.322 (73.414) | 2.739 ** | 0.132 (−37.926) |
Landscape Pattern Indices | Cropland | Woodland | Grassland | Water Bodies | Built-Up Land | |||||
---|---|---|---|---|---|---|---|---|---|---|
p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | |
PD | 0.797 ** | 0.337 (74.574) | 0.511 ** | 0.133 (32.766) | 0.039 | −0.099 (−24.082) | 0.997 ** | 0.079 (20.569) | 0.934 ** | 0.264 (60.561) |
LPI | −0.008 | −0.302 (−67.797) | 0.042 | −0.108 (−26.861) | 0.059 | 0.117 (28.592) | −0.181 ** | 0.018 (4.954) | 0.054 | −0.233 (−54.014) |
ED | 0.180 ** | 0.318 (70.160) | 0.057 | 0.121 (30.071) | 0.500 ** | 0.130 (31.781) | −0.083 * | 0.051 (13.245) | 0.055 | 0.250 (56.963) |
AI | 0.433 ** | −0.307 (−68.200) | 0.175 * | −0.119 (−29.566) | 0.151 | −0.115 (−28.083) | −0.194 * | −0.068 (−17.521) | 0.183 * | −0.242 (−55.420) |
PLAND | −0.005 | −0.191 (−46.838) | 0.003 ** | 0.025 (5.986) | 0.028 * | −0.076 (−18.627) | 0.023 ** | 0.328 (74.304) | 0.011 ** | −0.165 (−39.259) |
Chi-Square | p | Z | |
---|---|---|---|
Day LST | 71,864.046 | <0.0001 | 39.26 |
Night LST | 333,048.07 | <0.0001 | 6.13 |
Landscape Pattern Indices | Correlation Coefficient for 2000 | Correlation Coefficient for 2010 | Correlation Coefficient for 2020 | Trend of Change |
---|---|---|---|---|
Built-up land_PD | 1.001 ** | 0.657 ** | 0.934 ** | ↓↑ |
Water Bodies_PD | 0.967 ** | 0.966 ** | 0.997 ** | ↑↑ |
Woodland_LPI | 0.117 ** | 0.323 ** | 0.042 | ↑↓ |
Water Bodies _LPI | 0.181 ** | 0.175 ** | 0.181 ** | —— |
Grassland_ED | 0.03 | 0.013 | 0.500 ** | ↑↑ |
Water Bodies _ED | −0.107 * | −0.097 * | −0.083 * | ↓↓ |
Built-up land _AI | 0.292 ** | 2.026 ** | 0.183 * | ↑↓ |
Water Bodies _AI | −0.221 ** | −0.204 * | −0.194 * | ↓↓ |
Built-up land _PLAND | 0.009 * | 2.739 ** | 0.011 ** | ↑↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Y.; Chen, T. Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area. Land 2025, 14, 729. https://doi.org/10.3390/land14040729
Wang J, Wang Y, Chen T. Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area. Land. 2025; 14(4):729. https://doi.org/10.3390/land14040729
Chicago/Turabian StyleWang, Jiayu, Yixuan Wang, and Tian Chen. 2025. "Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area" Land 14, no. 4: 729. https://doi.org/10.3390/land14040729
APA StyleWang, J., Wang, Y., & Chen, T. (2025). Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area. Land, 14(4), 729. https://doi.org/10.3390/land14040729