A Framework for Assessing the Effectiveness of Carbon Storage Change During the Process of Land Consolidation
Abstract
:1. Introduction
2. Policy Background and Theoretical Foundations
2.1. Land Consolidation and Carbon Neutrality
- Policy formulation stage (PF): The top–level government develops the policy based on regional needs, setting objectives, operational mechanisms, registration thresholds, and promotional methods. Villagers independently decide whether to participate.
- Construction stage (CO): Local governments create construction plans with the characteristics of registered sites and execute construction projects systematically.
- Post-construction management stage (PM): Following the completion of construction, the top-level government conducts inspections to ensure the project meets acceptance criteria. Periodic verification ensures that reclamation plots maintain their status, including planting quantity and quality.
2.2. Effectiveness Theory of Land Consolidation Policy
2.2.1. Policy Formulation Stage
2.2.2. Construction Stage
2.2.3. Post-Construction Management Stage
2.3. Theoretical Framework
3. Materials and Methods
3.1. Study Area
3.2. Date
3.2.1. Estimation of Vegetation Carbon Density in Forest and Garden Lands
Area | Land-Use Type | Soil Organic Carbon Density | Sources |
---|---|---|---|
Pearl River Delta | Forest land | 3.33 | [74,75] |
Garden land | 2.97 | [76] | |
Northern Guangdong | Forest land | 5.52 | [74,77] |
Garden land | 5.37 | [77] | |
Eastern Guangdong | Forest land | 4.64 | [74] |
Garden land | 4.64 | [76] | |
Western Guangdong | Forest land | 5.09 | [74,78] |
Garden land | 5.34 | [78] |
3.2.2. Calculation of Carbon Storage
3.2.3. The Effectiveness in Each Project Stage
4. Results
4.1. Analysis of Land-Use Change and Verified Carbon Storage of Demolition and Reclamation (D&R)
4.2. Assessing the D&R Effectiveness at the Policy Formulation Stage
4.3. Assessing the D&R Effectiveness at the Construction Stage
4.4. Assessing the D&R Effectiveness at the Post-Construction Management Stage
5. Discussion
5.1. D&R Substantially Increased Regional Carbon Storage Compared with Other Land Consolidation Forms
5.2. Policy Formulation Stage: Significant Room for CS Improvement Suggests Low Adaptability of Policy Content
5.3. Construction Stage: Detailing Work Contents and Unified Administration Addresses the Composite and Emergent Nature of Engineering
5.4. Post-Management Stage: Scientific Post-Management Is Crucial for Enhancing CS
5.5. Carbon Density Modified
5.6. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LC | Land consolidation |
CS | Carbon storage |
PF | Policy formulation stages |
CO | Construction stages |
PM | Post-management stages |
D&R | The Guangdong Demolition and Reclamation |
PRD | Pearl River Delta |
SD | Standard deviation |
CV | Coefficient of variation |
Appendix A
Region | Sample Plot | Land Type | Plant Specie | Height (m) | Diameter at Breast Height (cm) | Plot Area (hm2) | Total Amount | Volume of Single Tree (m3) | Volume of Storage (m3/hm2) | Biomass (t/hm2) | Carbon Coefficient (g/kg) | Vegetation Carbon Density (t/hm2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pearl River Delta | Gaoming | Forest land | Handroanthus chrysanthus (Jacq.) S.O.Grose | 3.00 | 7.60 | 100.47 × 10−2 | 1005 | 0.012702077 | 12.70 | 13.79 | 522.19 | 7.20 |
Kaiping | Forest land | Bauhinia × blakeana Dunn | 2.20 | 5.00 | 160.00 × 10−2 | 667 | 0.004031707 | 1.68 | 1.88 | 520.67 | 0.98 | |
Xinhui | Forest land | Ficus microcarpa L. f. | 2.10 | 12.30 | 666.67 × 10−2 | 1852 | 0.023289266 | 6.47 | 7.10 | 522.19 | 3.71 | |
Northern Guangdong | Wenyuan | Forest land | Lagerstroemia speciosa (L.) Pers. | 2.00 | 6.80 | 478.20 × 10−2 | 1406 | 0.006779132 | 1.99 | 2.23 | 520.67 | 1.16 |
Lechang | Forest land | Osmanthus fragrans (Thunb.) Lour. | 3.40 | 11.20 | 109.73 × 10−2 | 392 | 0.031263763 | 11.17 | 11.89 | 522.19 | 6.21 | |
Yangshan | Forest land | Acacia auriculiformis A. Cunn. ex Benth | 1.50 | 13.00 | 113.33 × 10−2 | 354 | 0.018582505 | 5.81 | 6.51 | 533.07 | 3.47 | |
Eastern Guangdong | Chaonan | Forest land | Terminalia neotaliala Capuron | 3.00 | 6.00 | 266.67 × 10−2 | 833 | 0.007916807 | 2.47 | 2.70 | 520.67 | 1.41 |
Jiedong | Forest land | Celtis sinensis Pers. | 3.40 | 9.50 | 266.67 × 10−2 | 1111 | 0.022493261 | 9.37 | 10.03 | 520.67 | 5.22 | |
Raoping | Forest land | Bischofia javanica Bl. | 2.50 | 12.00 | 300.00 × 10−2 | 1071 | 0.026389356 | 9.42 | 10.23 | 522.19 | 5.34 | |
Western Guangdong | Suixi | Forest land | Lagerstroemia speciosa (L.) Pers. | 3.00 | 7.20 | 300.00 × 10−2 | 1364 | 0.011400202 | 5.18 | 5.63 | 520.67 | 2.93 |
Leizhou | Forest land | Delonix regia (Boj.) Raf. | 3.00 | 11.00 | 300.00 × 10−2 | 1000 | 0.026609267 | 8.87 | 9.53 | 522.19 | 4.98 | |
Gaozhou | Forest land | Elaeocarpus decipiens Hemsl. | 3.00 | 10.00 | 306.67 × 10−2 | 1022 | 0.02199113 | 7.33 | 7.90 | 522.19 | 4.12 |
Region | Sample Plot | Land Type | Plant Specie | Height (m) | Diameter at Breast Height (cm) | Plot Area (hm2) | Density per Hectare | Biomass (t/hm2) | Carbon Coefficient (g/kg) | Vegetation Carbon Density (t/hm2) |
---|---|---|---|---|---|---|---|---|---|---|
Pearl River Delta | Enping | Garden land | Citrus × limon (Linnaeus) Osbeck | 1.60 | 4.00 | 0.20 × 10−2 | 600 | 0.86 | 522.19 | 0.45 |
Boluo | Garden land | Clausena lansium (Lour.) Skeels | 2.00 | 7.00 | 15.93 × 10−2 | 450 | 2.29 | 520.67 | 1.19 | |
Huidong | Garden land | Psidium guajava Linn. | 0.77 | 3.00 | 0.10 × 10−2 | 825 | 0.51 | 522.19 | 0.26 | |
Northern Guangdong | Xinfeng | Garden land | Eriobotrya japonica (Thunb.) Lindl. | 1.80 | 6.00 | 2.67 × 10−2 | 675 | 2.39 | 520.67 | 1.25 |
Guangning | Garden land | Amygdalus persica L. | 1.80 | 8.00 | 0.40 × 10−2 | 720 | 4.71 | 522.19 | 2.46 | |
Yingde | Garden land | Camellia-oilfera Abel | 1.00 | 6.00 | 1.60 × 10−2 | 1050 | 3.07 | 533.07 | 1.64 | |
Eastern Guangdong | Longhu | Garden land | Lagerstroemia indica L. | 1.20 | 7.00 | 1.33 × 10−2 | 525 | 2.26 | 520.67 | 1.18 |
Chenghai | Garden land | Lagerstroemia parviflora Roxb. | 1.40 | 7.00 | 2.47 × 10−2 | 900 | 4.08 | 520.67 | 2.12 | |
Luhe | Garden land | Citrus maxima | 1.50 | 6.50 | 2.62 × 10−2 | 300 | 1.19 | 522.19 | 0.62 | |
Western Guangdong | Dianbai | Garden land | Musa nana Lour. | 5.00 | 11.20 | 0.97 × 10−2 | 1050 | 19.67 | 520.67 | 10.24 |
Yangdong | Garden land | Dimocarpus longan Lour. | 3.00 | 12.00 | 2.45 × 10−2 | 345 | 6.33 | 522.19 | 3.30 | |
Yangxi | Garden land | Litchi chinensis Sonn. | 2.00 | 20.00 | 2.17 × 10−2 | 270 | 12.86 | 522.19 | 6.71 |
Region | County | Verified Carbon Storage (t) | Qualified Carbon Storage (t) | Carbon Storage After Construction (t) | Maximum Ideal Carbon Storage (t) | The Quality of QV (%) | The Quality of CO (%) | The Quality of SD (%) |
---|---|---|---|---|---|---|---|---|
Pearl River Delta | Zengcheng | 0.0 | 0.0 | 8.7 | 21,378.1 | - | 0.0% | 0.0% |
Gaoming | 86.1 | 114.8 | 340.1 | 9832.3 | 75.0% | 33.7% | 3.5% | |
Xinhui | 343.8 | 481.2 | 1609.5 | 17,655.1 | 71.5% | 29.9% | 9.1% | |
Taishan | 154.0 | 215.6 | 1925.5 | 30,267.5 | 71.5% | 11.2% | 6.4% | |
Kaiping | 367.0 | 513.7 | 2845.3 | 18,601.1 | 71.5% | 18.1% | 15.3% | |
Heshan | 244.8 | 342.7 | 1710.8 | 14,937.5 | 71.5% | 20.0% | 11.5% | |
Enping | 381.3 | 533.7 | 2538.5 | 16,063.3 | 71.5% | 21.0% | 15.8% | |
Huiyang | 0.0 | 0.0 | 512.2 | 25,803.1 | - | 0.0% | 2.0% | |
Boluo | 87.2 | 113.4 | 804.4 | 31,685.6 | 76.8% | 14.1% | 2.5% | |
Huidong | 422.6 | 479.9 | 830.5 | 18,399.5 | 88.1% | 57.8% | 4.5% | |
Longmen | 456.3 | 695.4 | 1617.8 | 15,875.6 | 65.6% | 43.0% | 10.2% | |
Northern Guangdong | Wujiang | 94.9 | 111.5 | 248.3 | 4949.3 | 85.1% | 44.9% | 5.0% |
Zhenjiang | 58.2 | 88.4 | 225.9 | 7231.6 | 65.8% | 39.1% | 3.1% | |
Qujiang | 8.2 | 51.4 | 357.4 | 13,135.0 | 15.9% | 14.4% | 2.7% | |
Shixing | 213.7 | 292.4 | 1366.3 | 15,282.4 | 73.1% | 21.4% | 8.9% | |
Renhua | 110.5 | 161.1 | 508.7 | 12,027.6 | 68.6% | 31.7% | 4.2% | |
Wengyuan | 95.1 | 150.0 | 987.2 | 18,251.1 | 63.4% | 15.2% | 5.4% | |
Ruyuan Yao Autonomous County | 73.2 | 76.4 | 302.9 | 8515.5 | 95.8% | 25.2% | 3.6% | |
Xinfeng | 8.8 | 92.8 | 533.1 | 12,257.3 | 9.5% | 17.4% | 4.4% | |
Lechang | 285.4 | 349.8 | 610.6 | 13,710.5 | 81.6% | 57.3% | 4.5% | |
Nanxiong | 199.2 | 265.6 | 973.3 | 37,548.3 | 75.0% | 27.3% | 2.6% | |
Dinghu | 304.0 | 593.3 | 746.0 | 6681.2 | 51.2% | 79.5% | 11.2% | |
Gaoyao | 1514.5 | 2955.7 | 4948.6 | 40,871.1 | 51.2% | 59.7% | 12.1% | |
Guangning | 392.6 | 1018.7 | 6065.3 | 17,864.6 | 38.5% | 16.8% | 34.0% | |
Huaiji | 457.7 | 798.5 | 11,935.6 | 39,748.2 | 57.3% | 6.7% | 30.0% | |
Fengkai | 154.2 | 381.6 | 6139.9 | 21,387.2 | 40.4% | 6.2% | 28.7% | |
Deqing | 797.3 | 1160.6 | 3040.6 | 13,730.4 | 68.7% | 38.2% | 22.2% | |
Sihui | 662.6 | 1293.0 | 3257.2 | 16,028.3 | 51.2% | 39.7% | 20.3% | |
Zijin | 61.2 | 76.3 | 258.8 | 24,126.0 | 80.2% | 29.5% | 1.1% | |
Longchuan | 495.4 | 519.5 | 1041.5 | 33,365.6 | 95.4% | 49.9% | 3.1% | |
Lianping | 173.6 | 173.6 | 358.3 | 13,480.0 | 100.0% | 48.5% | 2.7% | |
Heping | 215.7 | 240.9 | 409.4 | 20,637.5 | 89.6% | 58.8% | 2.0% | |
Dongyuan | 99.1 | 171.7 | 2246.7 | 18,813.2 | 57.7% | 7.6% | 11.9% | |
Qingcheng | 5.5 | 8.0 | 256.0 | 23,038.2 | 69.1% | 3.1% | 1.1% | |
Qingxin | 65.0 | 136.3 | 354.1 | 17,546.0 | 47.7% | 38.5% | 2.0% | |
Fogang | 119.7 | 125.1 | 204.9 | 17,807.8 | 95.7% | 61.0% | 1.2% | |
Yangshan | 255.2 | 273.5 | 564.4 | 13,772.0 | 93.3% | 48.5% | 4.1% | |
Lianshan Zhuang Yao Autonomous County | 251.5 | 324.7 | 2446.8 | 8665.9 | 77.5% | 13.3% | 28.2% | |
Liannan Yao Autonomous County | 45.5 | 167.6 | 1166.2 | 4537.9 | 27.2% | 14.4% | 25.7% | |
Yingde | 64.2 | 64.2 | 5081.3 | 35,039.4 | 100.0% | 1.3% | 14.5% | |
Lianzhou | 753.5 | 1793.9 | 5322.2 | 13,907.9 | 42.0% | 33.7% | 38.3% | |
Eastern Guangdong | Longhu | 0.0 | 10.1 | 27.1 | 7613.0 | 0.0% | 37.3% | 0.4% |
Jinping | 0.0 | 35.0 | 35.9 | 2899.3 | 0.0% | 97.5% | 1.2% | |
Haojiang | 0.0 | 0.8 | 9.3 | 3010.1 | 0.0% | 8.9% | 0.3% | |
Chaoyang | 2.0 | 7.8 | 16.6 | 26,864.7 | 25.0% | 47.3% | 0.1% | |
Chaonan | 2.1 | 8.3 | 16.4 | 20,551.8 | 25.0% | 50.7% | 0.1% | |
Chenghai | 10.1 | 10.1 | 15.0 | 3712.3 | 100.0% | 67.3% | 0.4% | |
Nanao | 0.0 | 0.0 | 2.7 | 1463.8 | - | 0.0% | 0.2% | |
Meijiang | 38.7 | 48.4 | 102.0 | 2435.1 | 80.0% | 47.4% | 4.2% | |
Meixian | 443.1 | 565.6 | 1049.5 | 30,552.4 | 78.3% | 53.9% | 3.4% | |
Dapu | 418.8 | 737.7 | 3292.6 | 17,213.9 | 56.8% | 22.4% | 19.1% | |
Fengshun | 601.8 | 627.4 | 969.9 | 22,167.2 | 95.9% | 64.7% | 4.4% | |
Wuhua | 799.1 | 800.6 | 897.5 | 61,841.1 | 99.8% | 89.2% | 1.5% | |
Pingyuan | 768.9 | 944.1 | 2080.0 | 15,674.9 | 81.5% | 45.4% | 13.3% | |
Jiaoling | 232.4 | 316.6 | 792.8 | 12,320.6 | 73.4% | 39.9% | 6.4% | |
Xingning | 615.0 | 961.0 | 1643.5 | 51,710.0 | 64.0% | 58.5% | 3.2% | |
Haifeng | 62.7 | 89.0 | 158.7 | 7849.9 | 70.5% | 56.1% | 2.0% | |
Luhe | 92.6 | 92.6 | 206.2 | 7971.8 | 100.0% | 44.9% | 2.6% | |
Lufeng | 0.0 | 0.0 | 9.9 | 9938.0 | - | 0.0% | 0.1% | |
Xiangqiao | 0.0 | 0.0 | 111.3 | 4178.9 | - | 0.0% | 2.7% | |
Chao’An | 35.0 | 51.2 | 284.4 | 18,608.4 | 68.5% | 18.0% | 1.5% | |
Raoping | 20.5 | 122.8 | 439.0 | 16,702.2 | 16.7% | 28.0% | 2.6% | |
Rongcheng | 0.0 | 59.8 | 113.2 | 16,948.8 | 0.0% | 52.8% | 0.7% | |
Jiedong | 54.5 | 138.8 | 162.2 | 36,941.8 | 39.3% | 85.6% | 0.4% | |
Jiexi | 117.9 | 287.3 | 776.4 | 7254.2 | 41.0% | 37.0% | 10.7% | |
Huilai | 40.4 | 127.1 | 152.8 | 15,047.7 | 31.8% | 83.2% | 1.0% | |
Puning | 173.0 | 369.5 | 1261.3 | 37,511.6 | 46.8% | 29.3% | 3.4% | |
Western Guangdong | Mazhang | 0.0 | 0.0 | 28.8 | 40,684.5 | - | 0.0% | 0.1% |
Suixi | 435.5 | 1019.2 | 2685.7 | 72,525.2 | 42.7% | 38.0% | 3.7% | |
Xuwen | 165.2 | 165.2 | 331.6 | 69,375.2 | 100.0% | 49.8% | 0.5% | |
Lianjiang | 680.0 | 1168.2 | 15,446.4 | 90,810.8 | 58.2% | 7.6% | 17.0% | |
Leizhou | 425.3 | 638.0 | 3274.0 | 54,339.3 | 66.7% | 19.5% | 6.0% | |
Maonan | 67.1 | 139.2 | 1199.4 | 49,970.9 | 48.2% | 11.6% | 2.4% | |
Dianbai | 1121.9 | 1846.4 | 5054.7 | 107,624.8 | 60.8% | 36.5% | 4.7% | |
Gaozhou | 369.1 | 908.4 | 3609.9 | 115,058.5 | 40.6% | 25.2% | 3.1% | |
Huazhou | 1112.6 | 1453.6 | 6212.0 | 100,095.8 | 76.5% | 23.4% | 6.2% | |
Xinyi | 478.6 | 560.8 | 1269.1 | 70,905.7 | 85.4% | 44.2% | 1.8% | |
Jiangcheng | 0.0 | 0.0 | 31.5 | 14,883.1 | - | 0.0% | 0.2% | |
Yangdong | 168.3 | 168.3 | 369.3 | 10,221.4 | 100.0% | 45.6% | 3.6% | |
Yangxi | 263.1 | 446.1 | 1204.0 | 9549.7 | 59.0% | 37.1% | 12.6% | |
Yangchun | 399.5 | 530.4 | 4314.3 | 43,808.5 | 75.3% | 12.3% | 9.9% | |
Yuncheng | 110.7 | 203.3 | 556.2 | 18,917.9 | 54.5% | 36.5% | 2.9% | |
Yun’An | 303.8 | 562.6 | 2841.4 | 15,479.9 | 54.0% | 19.8% | 18.4% | |
Xinxing | 779.9 | 844.1 | 2301.7 | 28,600.9 | 92.4% | 36.7% | 8.1% | |
Yunan | 601.6 | 737.1 | 2428.4 | 24,504.3 | 81.6% | 30.4% | 9.9% | |
Luoding | 1375.2 | 1645.3 | 4680.3 | 66,959.8 | 83.6% | 35.2% | 7.0% |
References
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land Use/Land Cover Change and Its Impact on Ecosystem Carbon Storage in Coastal Areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; De Miguel, S.; Nabuurs, G.-J.; Renner, S.S.; Van Den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated Global Assessment of the Natural Forest Carbon Potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Cui, Z.; Fan, T.; Yin, H. Impacts of Land Use Change on Carbon Storage in the Guangxi Beibu Gulf Economic Zone Based on the PLUS-InVEST Model. Sci. Rep. 2025, 15, 6468. [Google Scholar] [CrossRef]
- Demetriou, D. The Assessment of Land Valuation in Land Consolidation Schemes: The Need for a New Land Valuation Framework. Land Use Policy 2016, 54, 487–498. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and Multi-Scenario Prediction of Carbon Storage to Land Use/Cover Change in the Main Urban Area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Long, H.; Cui, W. Community-Based Rural Residential Land Consolidation and Allocation Can Help to Revitalize Hollowed Villages in Traditional Agricultural Areas of China: Evidence from Dancheng County, Henan Province. Land Use Policy 2014, 39, 188–198. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Chuai, X.; Xie, F.; Yang, F.; Gao, R.; Ji, X. Reexamine China’s Terrestrial Ecosystem Carbon Balance under Land Use-Type and Climate Change. Land Use Policy 2021, 102, 105275. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L.; Zhu, C. Effects of Agricultural Land Consolidation on Soil Conservation Service in the Hilly Region of Southeast China—Implications for Land Management. Land Use Policy 2020, 95, 104637. [Google Scholar] [CrossRef]
- Li, X.; Hui, N.; Yang, Y.; Ma, J.; Luo, Z.; Chen, F. Short-Term Effects of Land Consolidation of Dryland-to-Paddy Conversion on Soil CO2 Flux. J. Environ. Manag. 2021, 292, 112691. [Google Scholar] [CrossRef]
- Fei, L.; Wu, C.; Cheng, J. Carbon Effect of Rural Land Consolidation and Its Policy Response. Resour. Sci. 2017, 39, 2073–2082. [Google Scholar] [CrossRef]
- Zhou, J.; Cao, X. What Is the Policy Improvement of China’s Land Consolidation? Evidence from Completed Land Consolidation Projects in Shaanxi Province. Land Use Policy 2020, 99, 104847. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Li, W.; Zhang, Y.; Zhang, H.; Ran, Y. Carbon Effect Calculation and Upgrading Strategy of Agricultural Land Consolidation Project in Urban Edge of Three Gorges Reservoir Area. Front. Chem. 2022, 10, 1022644. [Google Scholar] [CrossRef]
- Cao, J.; Wei, C.; Adamowski, J.F.; Zhou, J.; Liu, C.; Zhu, G.; Dong, X.; Zhang, X.; Zhao, H.; Feng, Q. Could Arid and Semi-Arid Abandoned Lands Prove Ecologically or Economically Valuable If They Afford Greater Soil Organic Carbon Storage than Afforested Lands in China’s Loess Plateau? Land Use Policy 2020, 99, 105027. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, X.; Yang, X.; Shan, W.; Zhou, Y. Determining and Estimating Impacts of Farmland Consolidation Projects on the Regional Carbon Effects. Resour. Sci. 2016, 38, 93–101. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Deo, R.; Gong, Y.; Feng, Q. Influence of Stand Type and Stand Age on Soil Carbon Storage in China’s Arid and Semi-Arid Regions. Land Use Policy 2018, 78, 258–265. [Google Scholar] [CrossRef]
- Liu, R.; Yu, C.; Jiang, J.; Huang, Z.; Jiang, Y. Farmer Differentiation, Generational Differences and Farmers’ Behaviors to Withdraw from Rural Homesteads: Evidence from Chengdu, China. Habitat Int. 2020, 103, 102231. [Google Scholar] [CrossRef]
- Han, J.; Zhou, X.; Xiang, W. Research Progress of Land Use Effects on Carbon Emissions and Low Carbon Management. Acta Ecol. Sin. 2016, 36, 1152–1161. [Google Scholar] [CrossRef]
- Shan, W. A Framework for Assessing Carbon Effect of Land Consolidation with Life Cycle Assessment: A Case Study in China. J. Environ. Manag. 2020, 266, 110557. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Ma, J.; Yu, H.; Yang, Y.; Wang, Y. Short-Term Effects of Land Consolidation of Dryland-to-Paddy Conversion on Soil Carbon Flux. Acta Ecol. Sin. 2021, 41, 7725–7734. [Google Scholar] [CrossRef]
- Li, H.; Jin, X.; Yang, X.; Xu, W.; Zhou, Y. Meta-Analysis of the Effects of Different Farmland Management Measures on Soil Carbon Intensity. Resour. Sci. 2019, 41, 1630–1640. [Google Scholar] [CrossRef]
- Li, D.; Ning, Z.; Chen, G.; Li, Y.; Cui, B.; Wang, Q.; Xie, T. The Effect of Land Use and Land Cover on Soil Carbon Storage in the Yellow River Delta, China: Implications for Wetland Restoration and Adaptive Management. J. Environ. Manag. 2024, 367, 122097. [Google Scholar] [CrossRef]
- Zhao, M.; Cao, G.; Zhao, Q.; Ma, Y.; Zhang, F.; Li, H.; He, Q.; Qiu, X. Distribution Patterns and Influencing Factors Controlling Soil Carbon in the Heihe River Source Basin, Northeast Qinghai–Tibet Plateau. Land 2025, 14, 409. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Liu, L.; Wu, T.; Feng, Y.; Guan, W.; Liu, Y.; Xu, B. Soil Salinity Reduces Soil Carbon Storage Mainly by Decreasing Inorganic Carbon in the Ring Tarim Basin of Xinjiang, China. Land Degrad. Dev. 2025, ldr.5523. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, C.; Wang, Z.; Hai, H.; Miao, L. Spatiotemporal Variation and Driving Factors of Carbon Sequestration Rate in Terrestrial Ecosystems of Ningxia, China. Land 2025, 14, 94. [Google Scholar] [CrossRef]
- Li, H.; Jin, X.; Han, B.; Xu, W.; Zhou, Y. Theoretical Research and Practical Strategy of Comprehensive Land Consolidation under the Goal of Carbon Emission Peak and Carbon Neutrality. Geogr. Res. 2022, 41, 3164–3182. [Google Scholar] [CrossRef]
- Gilardi, F.; Shipan, C.R.; Wüest, B. Policy Diffusion: The Issue-Definition Stage. Am. J. Polit. Sci. 2021, 65, 21–35. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, R. Land Policy Making in a Complex System: The Innovation and Diffusion Logic of China’s Retained Land Policy Reform. Land Use Policy 2024, 144, 107263. [Google Scholar] [CrossRef]
- Gilardi, F. Who Learns from What in Policy Diffusion Processes? Am. J. Polit. Sci. 2010, 54, 650–666. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, D.; Sun, Y.; He, J. Predicting Joint Effects of Multiple Land Consolidation Strategies on Ecosystem Service Interactions. Environ. Sci. Pollut. Res. 2022, 29, 37234–37247. [Google Scholar] [CrossRef]
- Kusi, K.K.; Khattabi, A.; Mhammdi, N.; Lahssini, S. Prospective Evaluation of the Impact of Land Use Change on Ecosystem Services in the Ourika Watershed, Morocco. Land Use Policy 2020, 97, 104796. [Google Scholar] [CrossRef]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Di Pirro, E.; Sallustio, L.; Capotorti, G.; Marchetti, M.; Lasserre, B. A Scenario-Based Approach to Tackle Trade-Offs between Biodiversity Conservation and Land Use Pressure in Central Italy. Ecol. Model. 2021, 448, 109533. [Google Scholar] [CrossRef]
- Chen, Y.; Guerschman, J.P.; Cheng, Z.; Guo, L. Remote Sensing for Vegetation Monitoring in Carbon Capture Storage Regions: A Review. Appl. Energy 2019, 240, 312–326. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Cao, M. Vegetation and Soil Carbon Stocks in China. Sci. Sin. 2003, 72–80. [Google Scholar]
- Spawn, S.A.; Sullivan, C.C.; Lark, T.J.; Gibbs, H.K. Harmonized Global Maps of above and Belowground Biomass Carbon Density in the Year 2010. Sci. Data 2020, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.J.; Hancock, G.R.; Verdon-Kidd, D.C.; Martinez, C.; Wells, T. The Impact of Shifting Köppen-Geiger Climate Zones on Soil Organic Carbon Concentrations in Australian Grasslands. Glob. Planet. Change 2021, 202, 103523. [Google Scholar] [CrossRef]
- Axelsson, E.P.; Grady, K.C.; Alloysius, D.; Falck, J.; Lussetti, D.; Vairappan, C.S.; Sau Wai, Y.; Ioki, K.; Lardizabal, M.L.T.; Ahmad, B.; et al. Lessons Learned from 25 Years of Operational Large-Scale Restoration: The Sow-A-Seed Project, Sabah, Borneo. Ecol. Eng. 2024, 206, 107282. [Google Scholar] [CrossRef]
- Fernández-Núñez, E.; Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R. Carbon Allocation Dynamics One Decade after Afforestation with Pinus Radiata D. Don and Betula Alba L. under Two Stand Densities in NW Spain. Ecol. Eng. 2010, 36, 876–890. [Google Scholar] [CrossRef]
- Xue, C.; Xu, Q.; Lin, L.; Luo, Y.; Zhao, H.; Lei, Y. Biomass Growth Models for Individual Tree of Main Indigenous Broadleaf Tree Species in Guangdong Province. J. South China Agric. Univ. 2019, 40, 65–75. [Google Scholar] [CrossRef]
- Hanberry, B.B.; He, H.S. Effects of Historical and Current Disturbance on Forest Biomass in Minnesota. Landsc. Ecol. 2015, 30, 1473–1482. [Google Scholar] [CrossRef]
- Moravcová, J.; Koupilová, M.; Pavlíček, T.; Zemek, F.; Kvítek, T.; Pečenka, J. Analysis of Land Consolidation Projects and Their Impact on Land Use Change, Landscape Structure, and Agricultural Land Resource Protection: Case Studies of Pilsen-South and Pilsen-North (Czech Republic). Landsc. Ecol. Eng. 2017, 13, 1–13. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, Y.-T.; Long, H.; Deng, W. Land Consolidation: A Comparative Research between Europe and China. Land Use Policy 2022, 112, 105790. [Google Scholar] [CrossRef]
- Muchová, Z.; Leitmanová, M.; Jusková, K.; Konc, Ľ.; Vašek, A. Identification of Stagnation Reasons in the Field of Land Consolidation in Slovakia Compared with the Czech Republic. J. Water Land Dev. 2017, 33, 141–148. [Google Scholar] [CrossRef]
- Naylon, J. Land Consolidation in Spain. Ann. Assoc. Am. Geogr. 1959, 49, 361–373. [Google Scholar] [CrossRef]
- Huang, Q.; Li, M.; Chen, Z.; Li, F. Land Consolidation: An Approach for Sustainable Development in Rural China. Ambio 2011, 40, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Zhang, Y.; Tu, S. Rural Vitalization in China: A Perspective of Land Consolidation. J. Geogr. Sci. 2019, 29, 517–530. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Gao, Y.; Zeng, C.; Wang, B.; Li, X.; Li, X. How Does Land Consolidation Drive Rural Industrial Development? Qualitative and Quantitative Analysis of 32 Land Consolidation Cases in China. Land Use Policy 2023, 130, 106664. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key Issues of Land Use in China and Implications for Policy Making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Guanghui, J.; Xinpan, W.; Wenju, Y.; Ruijuan, Z. A New System Will Lead to an Optimal Path of Land Consolidation Spatial Management in China. Land Use Policy 2015, 42, 27–37. [Google Scholar] [CrossRef]
- Su, K.; Hu, B.; Shi, K.; Zhang, Z.; Yang, Q. The Structural and Functional Evolution of Rural Homesteads in Mountainous Areas: A Case Study of Sujiaying Village in Yunnan Province, China. Land Use Policy 2019, 88, 104100. [Google Scholar] [CrossRef]
- Luo, X.; Yang, R. Mechanism and Effect of the Production of Space of Rural Construction Land Consolidation: A Case Study of Yaotang Village, Guangdong Province. J. Nat. Resour. 2022, 37, 2085. [Google Scholar] [CrossRef]
- Fang, G.; Chen, G.; Yang, K.; Yin, W.; Tian, L. Can Green Tax Policy Promote China’s Energy Transformation?—A Nonlinear Analysis from Production and Consumption Perspectives. Energy 2023, 269, 126818. [Google Scholar] [CrossRef]
- Pahle, M.; Schaeffer, R.; Pachauri, S.; Eom, J.; Awasthy, A.; Chen, W.; Di Maria, C.; Jiang, K.; He, C.; Portugal-Pereira, J.; et al. The Crucial Role of Complementarity, Transparency and Adaptability for Designing Energy Policies for Sustainable Development. Energy Policy 2021, 159, 112662. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, E.; Liao, H. Does Fiscal Decentralization Affect Regional High-Quality Development by Changing Peoples’ Livelihood Expenditure Preferences: Provincial Evidence from China. Land 2022, 11, 1407. [Google Scholar] [CrossRef]
- Ariti, A.T.; van Vliet, J.; Verburg, P.H. The Role of Institutional Actors and Their Interactions in the Land Use Policy Making Process in Ethiopia. J. Environ. Manag. 2019, 237, 235–246. [Google Scholar] [CrossRef]
- Liu, P.; Ravenscroft, N. Collective Action in Implementing Top-down Land Policy: The Case of Chengdu, China. Land Use Policy 2017, 65, 45–52. [Google Scholar] [CrossRef]
- Dewey, J. The Public and Its Problems; Holt Publishers: New York, NY, USA, 1927. [Google Scholar]
- Bizikova, L.; Swanson, D.; Tyler, S.; Roy, D.; Venema, H.D. Policy Adaptability in Practice: Lessons Learned in the Application of the Adaptive Design and Assessment Policy Tool (ADAPTool) to Examine Public Policies in Canada in the Context of Climate Change. Policy Des. Pract. 2018, 1, 47–62. [Google Scholar] [CrossRef]
- Swanson, D.; Bhadwal, S. Creating Adaptive Policies: A Guide for Policymaking in an Uncertain World; IDRC: Ottawa, ON, Canada, 2009; ISBN 9788132101475.
- Swanson, D.; Barg, S.; Tyler, S.; Venema, H.; Tomar, S.; Bhadwal, S.; Nair, S.; Roy, D.; Drexhage, J. Seven Tools for Creating Adaptive Policies. Technol. Forecast. Soc. Change 2010, 77, 924–939. [Google Scholar] [CrossRef]
- Tyler, S.; Tyler, K.H.; Roy, D.; Swanson, D. ADAPTool Guidebook: V2.0 for Existing Policies; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2014. [Google Scholar]
- Śladowski, G.; Sroka, B.; Szewczyk, B.; Barnaś, K. Identification of Strategies for Enhancing the Risk Resilience of Construction Projects as Systems. Autom. Constr. 2024, 166, 105621. [Google Scholar] [CrossRef]
- Silvia, A.M. Haiti and the Heavens: Utopianism and Technocracy in the Cold War Era. Ph.D. Thesis, Florida International University, Miami, FL, USA, 2016. [Google Scholar]
- Zhu, J.; Mostafavi, A. Discovering Complexity and Emergent Properties in Project Systems: A New Approach to Understanding Project Performance. Int. J. Proj. Manag. 2017, 35, 1–12. [Google Scholar] [CrossRef]
- Senge, P.M. The Fifth Discipline: The Art and Practice of the Learning Organization; Broadway Business: Newcastle Upon Tyne, UK, 2006; ISBN 0-385-26094-6. [Google Scholar]
- Wang, W.; Jin, X.; Zhao, Q.; Yang, X.; Xiang, X.; Zhou, Y. System Analysis and Mode Selection Ofthe Ex-Post Management and maintenance of rurall and consolidation. China Land Sci. 2018, 32, 74–81. [Google Scholar]
- Yadav, G.S.; Lal, R.; Meena, R.S.; Babu, S.; Das, A.; Bhowmik, S.N.; Datta, M.; Layak, J.; Saha, P. Conservation Tillage and Nutrient Management Effects on Productivity and Soil Carbon Sequestration under Double Cropping of Rice in North Eastern Region of India. Ecol. Indic. 2019, 105, 303–315. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Qian, Z.; Sun, M.; Yu, H.; Ma, X.; Wan, C.; Yang, Y. Cluster Analysis of Differences in Medical Economic Burden among Residents of Different Economic Levels in Guangdong Province, China. BMC Health Serv. Res. 2020, 20, 988. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Song, W.; Wang, F.; Gao, X.; Liu, L.; Dong, K.; Yang, D. Decoupling Analysis between Rural Population Change and Rural Construction Land Changes in China. Land 2022, 11, 231. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, R.; Li, Y. Potential of Land Consolidation of Hollowed Villages under Different Urbanization Scenarios in China. J. Geogr. Sci. 2013, 23, 503–512. [Google Scholar] [CrossRef]
- Wang, J.; Bai, J.; Zhao, Q.; Lu, Q.; Xia, Z. Five-Year Changes in Soil Organic Carbon and Total Nitrogen in Coastal Wetlands Affected by Flow-Sediment Regulation in a Chinese Delta. Sci. Rep. 2016, 6, 21137. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Tian, L. Dynamics of Carbon Storage and Its Drivers in Guangdong Province from 1979 to 2012. Forests 2021, 12, 1482. [Google Scholar] [CrossRef]
- Lin, L.; Xu, Q.; Luo, Y.; Xue, C.; Zhang, N. Study on the Growth Models for Main Broadleaved Tree Species in Guangdong Province. For. Environ. Sci. 2018, 34, 14–22. [Google Scholar]
- Chuai, X.; Huang, X.; Lai, L.; Zhang, M. Accounting of Surface Soil Carbon Storage and Response to Land Use Change Based on GIS. Trans. Chin. Soc. Agric. Eng. 2011, 27, 9. [Google Scholar]
- Zhu, X. Temporal and Spatial Variation of Organic Carbon and Soil Carbon Storage in The Pearl River Delta Economic Zone. Geol. Miner. Resour. South China 2014, 30, 176–185. [Google Scholar]
- Zhou, Y.; Zhong, X.; Guo, L.; Gan, X.; Li, Y.; Zhang, K.; Li, Z.; Liang, Y.; Xin, F.; Zhang, W. A Study of Top Soil Organic Carbon Concentration and Density under Different Land Use in West River Basin, Guangdong Province. For. Environ. Sci. 2009, 25, 1–7. [Google Scholar]
- Jia, L.; Zhu, X.; Zhao, Y.; Li, T. Spatial and Temporal Variation of Soil Carbon Storage and Organic Carbon Content in Leizhou Peninsula, Guangdong Province. South China Geol. 2019, 35, 373–379. [Google Scholar] [CrossRef]
- Li, T.; Chen, E. Characteristics and Influencing Factors of Soil Organic Carbon Storage in Shaoguan, Guangdong Province. South China Geol. 2021, 37, 93–102. [Google Scholar]
- Ariti, A.T.; van Vliet, J.; Verburg, P.H. Farmers’ Participation in the Development of Land Use Policies for the Central Rift Valley of Ethiopia. Land Use Policy 2018, 71, 129–137. [Google Scholar] [CrossRef]
- Arnott, D.; Chadwick, D.R.; Wynne-Jones, S.; Dandy, N.; Jones, D.L. Importance of Building Bridging and Linking Social Capital in Adapting to Changes in UK Agricultural Policy. J. Rural Stud. 2021, 83, 1–10. [Google Scholar] [CrossRef]
- Ding, Z.; Li, R.; O’Connor, P.; Zheng, H.; Huang, B.; Kong, L.; Xiao, Y.; Xu, W.; Ouyang, Z. An Improved Quality Assessment Framework to Better Inform Large-Scale Forest Restoration Management. Ecol. Indic. 2021, 123, 107370. [Google Scholar] [CrossRef]
- Nguyen, G.N.T.; Mani, V.; Kha, M.K.; Papadopoulos, T. Supply Chain Social Responsibility in Labour- Intensive Industries: A Practitioner’s Perspective. Prod. Plan. Control 2023, 34, 371–390. [Google Scholar] [CrossRef]
- Zhuo, C.; Liu, Y.; Dai, L.; Deng, Y. Cultural, Economic, or Transport Link: Does Carbon Emissions Trading Promote “Good Neighbor” Carbon Emission Reduction? Land 2024, 13, 1762. [Google Scholar] [CrossRef]
- Pelucha, M.; Shemetev, A. Unravelling the Link between Land Use Policy and Digital Infrastructure: Insights from Czech Rural Communities. Land Use Policy 2025, 150, 107452. [Google Scholar] [CrossRef]
- Eldeep, A.; Farag, M.; El-Hafez, L.A. Using BIM as a Lean Management Tool in Construction Processes—A Case Study. Ain Shams Eng. J. 2022, 13, 101556. [Google Scholar] [CrossRef]
- Negacz, K.; Petersson, M.; Widerberg, O.; Kok, M.; Pattberg, P. The Potential of International Cooperative Initiatives to Address Key Challenges of Protected Areas. Environ. Sci. Policy 2022, 136, 620–631. [Google Scholar] [CrossRef]
- Ali, D.A.; Deininger, K. Institutional Determinants of Large Land-Based Investments’ Performance in Zambia: Does Title Enhance Productivity and Structural Transformation? World Dev. 2022, 157, 105932. [Google Scholar] [CrossRef]
- Ye, C.; Zheng, S.; Gu, E. Positive Effect of Village Debt on Land Transfer: Evidence from County-Level Panel Data of Village Finance in Zhejiang Province. PLoS ONE 2021, 16, e0255072. [Google Scholar] [CrossRef] [PubMed]
- Chavunduka, C.; Dipura, R.; Vudzijena, V. Land, Investment and Production in Agrarian Transformation in Zimbabwe. Land Use Policy 2021, 105, 105371. [Google Scholar] [CrossRef]
- Sheng, Y.; Chancellor, W. Exploring the Relationship between Farm Size and Productivity: Evidence from the Australian Grains Industry. Food Policy 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Singh, V.P.; Cui, Y. Copula-Based Evaluations of Drought Variations in Guangdong, South China. Nat. Hazards 2011, 59, 1533–1546. [Google Scholar] [CrossRef]
- Mandlate, L.C.; Cuamba, E.d.L.; Rodrigues, F.H.G. Postrelease Monitoring Habitat Selection by Reintroduced Burchell’s Zebra and Blue Wildebeest in Southern Mozambique. Ecol. Evol. 2019, 9, 6458–6467. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Guan, X.; Chen, Y.; Zhang, Z.; Li, W. Anthropogenic Activities Have Accelerated the Restoration of Carbon Sequestration Services in the Upper Yellow River. Ecol. Eng. 2024, 207, 107355. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land Use Transitions: Progress, Challenges and Prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Chenu, C.; Garcia Cardenas, M.; Kaonga, M.; Koutika, L.-S.; Ladha, J.; Madari, B.; Shirato, Y.; Smith, P.; et al. The 4p1000 Initiative: Opportunities, Limitations and Challenges for Implementing Soil Organic Carbon Sequestration as a Sustainable Development Strategy. Ambio 2020, 49, 350–360. [Google Scholar] [CrossRef]
- Du, W.; Li, M.; Wang, Z. The Impact of Environmental Regulation on Firms’ Energy-Environment Efficiency: Concurrent Discussion of Policy Tool Heterogeneity. Ecol. Indic. 2022, 143, 109327. [Google Scholar] [CrossRef]
- Kim, J.; Koo, C.; Kim, C.-J.; Hong, T.; Park, H.S. Integrated CO2, Cost, and Schedule Management System for Building Construction Projects Using the Earned Value Management Theory. J. Clean. Prod. 2015, 103, 275–285. [Google Scholar] [CrossRef]
Phases | Representative Practices | Land–Use Change | Impact in the Practice Area | ||
---|---|---|---|---|---|
Area of Ecological Land | Soil Carbon Storage 1 | Plant Carbon Storage 2 | |||
Compensating for lost arable land | The Dynamic Equilibrium of Total Arable Land policy | Construction land transfers to arable land | - 3 | - | - |
Integrating arable land with rural settlements | The Boundless Expanse of Fertile Farmland Construction policy | Rural construction land transfers to arable land | ↑ 3 | ↑ | ↑ |
Restoring ecological functions | The Demolition and Reclamation policy | Rural construction land transfers to garden or forest land | ↑ | ↑ | ↑ |
Area | Forest Land | |||||||
---|---|---|---|---|---|---|---|---|
* | * | * | ||||||
Pearl River Delta | 3.98 | 3.33 | 7.31 | 77.58% | 0.57 | 2.97 | 3.54 | 78.66% |
Northern Guangdong | 3.98 | 5.52 | 9.5 | 34.63% | 1.21 | 5.37 | 6.58 | 69.96% |
Eastern Guangdong | 3.98 | 4.64 | 8.62 | 58.01% | 1.4 | 4.64 | 6.04 | 56.02% |
Western Guangdong | 3.98 | 5.09 | 9.07 | 51.41% | 6.01 | 5.34 | 11.35 | 25.67% |
SD * | 2.01 | 2.97 | ||||||
CV * | 51.74% | 113.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Deng, P.; Ke, C.; Fu, X.; Mi, J.; Zhou, L. A Framework for Assessing the Effectiveness of Carbon Storage Change During the Process of Land Consolidation. Land 2025, 14, 747. https://doi.org/10.3390/land14040747
Ye C, Deng P, Ke C, Fu X, Mi J, Zhou L. A Framework for Assessing the Effectiveness of Carbon Storage Change During the Process of Land Consolidation. Land. 2025; 14(4):747. https://doi.org/10.3390/land14040747
Chicago/Turabian StyleYe, Changdong, Pingping Deng, Chunpeng Ke, Xiaoping Fu, Jiyang Mi, and Long Zhou. 2025. "A Framework for Assessing the Effectiveness of Carbon Storage Change During the Process of Land Consolidation" Land 14, no. 4: 747. https://doi.org/10.3390/land14040747
APA StyleYe, C., Deng, P., Ke, C., Fu, X., Mi, J., & Zhou, L. (2025). A Framework for Assessing the Effectiveness of Carbon Storage Change During the Process of Land Consolidation. Land, 14(4), 747. https://doi.org/10.3390/land14040747