Spatiotemporal Coupling Evolution Characteristics and Driving Mechanisms of Corn Cultivation and Pig Farming in China
Abstract
:1. Introduction
2. Analysis Framework
3. Materials and Methods
3.1. Methodology
3.1.1. Center of Gravity Analysis Model
3.1.2. Coupling Development Relationship Index
3.1.3. Spatial Econometric Analysis Model
3.2. Data Sources and Study Area
4. Results
4.1. The Spatiotemporal Pattern Evolution of Corn Planting and Pig Farming
4.1.1. Spatiotemporal Evolution Characteristics of Corn Production Layout
4.1.2. Spatiotemporal Evolution Characteristics of Pig Production Layout
4.2. Analysis of the Coupling Relationship Between Corn Planting and Pig Farming
4.2.1. “Corn–Pig” Coupling Development Relationship Index
4.2.2. “Corn–Pig” Production Balance Coefficient
4.3. Analysis of the Driving Mechanism of the Coupling Relationship Between Corn Planting and Pig Farming
4.3.1. Spatial Autocorrelation Test and Spatial Model Identification
4.3.2. Analysis of the Factors Affecting Pig Farming Layout
4.3.3. Analysis of the Factors Affecting Corn Production Layout
4.3.4. Comparative Analysis of the Factors Affecting the Layouts of Pig and Corn Production
5. Discussion
5.1. Research Contributions
5.2. Policy Recommendations
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, X.; Wang, M. Research on Estimation and Pathways to Address the Scale of Food Gap in China under the Greater Food Approach. J. Nat. Resour. 2025, 40, 750–766. [Google Scholar] [CrossRef]
- Runhaar, H. Governing towards Sustainable Food Systems: New Connections for More Diversity. Int. J. Agric. Sustain. 2025, 23, 2475254. [Google Scholar] [CrossRef]
- Duan, D. Study on Sustainable Agricultural Structure Optimization Method Based on Multiobjective Optimization Algorithm. Comput. Intell. Neurosci. 2022, 2022, 5850684. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, Z. Does Farmer Economic Organization and Agricultural Specialization Improve Rural Income? Evidence from China. Econ. Model. 2012, 29, 990–993. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zou, C. How Does Agricultural Specialization Affect Carbon Emissions in China? J. Clean. Prod. 2022, 370, 133463. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Mishra, A.K.; Ni, M. Effects of Agricultural Subsidy Policy Adjustment on Carbon Emissions: A Quasi-Natural Experiment in China. J. Clean. Prod. 2025, 487, 144603. [Google Scholar] [CrossRef]
- Yue, Q.; Adamowski, J.; Cao, X.; Chen, D.; Xuanyuan, M.; Elbeltagi, A.; Dai, X. Managing Agricultural Crop and Livestock Land Use for Synergistic Energy-Economy-Environment Development: A Hybrid Multi-Objective Optimization Approach under a Waste-to-Energy Nexus. J. Clean. Prod. 2025, 486, 144544. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, P.; Hou, Y.; Ying, Z.; Wang, G. Research on the Supervision Mechanism and Effect of Environmental Regulation—Re-Estimation Based on China’s Corn Planting Fertilizer Pollution. Pol. J. Environ. Stud. 2022, 31, 4313–4330. [Google Scholar] [CrossRef]
- Dai, W. Bin Research on Prevention and Control of Chinese Agricultural Ecological Environment Pollution to Ensure Food Safety. Adv. Mat. Res. 2012, 616–618, 2247–2250. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Liu, X.; Li, Y.; Wang, X. Investigating Historical Dynamics and Mitigation Scenarios of Anthropogenic Greenhouse Gas Emissions from Pig Production System in China. J. Clean. Prod. 2021, 296, 126572. [Google Scholar] [CrossRef]
- Li, C.; Wu, K.; Wu, J. Environmental Hazard in Shanghai, China: Lessons Learned from Huangpu River Dead Pigs Incident. Nat. Hazards 2017, 88, 1269–1272. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Zhang, Y.; Yin, C.; Richel, A. The Effect of Corn Straw Return on Corn Production in Northeast China: An Integrated Regional Evaluation with Meta-Analysis and System Dynamics. Resour. Conserv. Recycl. 2021, 167, 105402. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Liu, Q. Exploring the Path of Balanced Development: The Decoupling Evaluation of Agricultural Production Efficiency and Land Carrying Capacity. Land Degrad. Dev. 2025, 36, 599–613. [Google Scholar] [CrossRef]
- Yu, Z.; Su, D.; Wang, S.; Wei, C.; Li, N.; Qu, Y.; Wang, M. Dynamic Matching and Spatial Optimization of Land Use and Resource-Environment Constraints in Typical Regions of the Yellow River Basin in China. Land 2023, 12, 1420. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Yao, S. Spatiotemporal Distribution and Dynamic Evolution of Grain Productivity Efficiency in the Yellow River Basin of China. Environ. Dev. Sustain. 2023, 26, 12005–12030. [Google Scholar] [CrossRef]
- Yin, P.; Fang, X.; Tian, Q.; Ma, Y. The Changing Regional Distribution of Grain Production in China in the 21st Century. J. Geogr. Sci. 2006, 16, 396–404. [Google Scholar] [CrossRef]
- Jia, S.; Qiu, Y.; Yang, C. Sustainable Development Goals, Financial Inclusion, and Grain Security Efficiency. Agronomy 2021, 11, 2542. [Google Scholar] [CrossRef]
- Sun, S.K.; Yin, Y.L.; Wu, P.T.; Wang, Y.B.; Luan, X.B.; Li, C. Geographical Evolution of Agricultural Production in China and Its Effects on Water Stress, Economy, and the Environment: The Virtual Water Perspective. Water Resour. Res. 2019, 55, 4014–4029. [Google Scholar] [CrossRef]
- Bole, Y.; Rina, S.; Guga, S.; Na, M.; Fan, S.; Zhang, J. Evaluation of Resources, Environment, and Ecological Carrying Capacity from the Perspective of “Production-Living-Ecology” Spaces: A Case Study of Western Jilin Province, China. J. Clean. Prod. 2025, 491, 144770. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Zhang, Y.; Liang, Z.; Zhang, Z.; Zhao, Y.; Li, P. Assessment of Agricultural Water Resources Carrying Capacity and Analysis of Its Spatio-Temporal Variation in Henan Province, China. J. Clean. Prod. 2023, 403, 136869. [Google Scholar] [CrossRef]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D’Odorico, P. Increased Food Production and Reduced Water Use through Optimized Crop Distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- Rising, J.; Devineni, N. Crop Switching Reduces Agricultural Losses from Climate Change in the United States by Half under RCP 8.5. Nat. Commun. 2020, 11, 4991. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhu, A.; Ali, T.; Zhang, Z.; Chen, X.; Wu, F.; Huang, J.; Davis, K.F. Crop Switching Can Enhance Environmental Sustainability and Farmer Incomes in China. Nature 2023, 616, 300–305. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Traceability in a Food Supply Chain: Safety and Quality Perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Usman, M.; Makhdum, M.S.A. What Abates Ecological Footprint in BRICS-T Region? Exploring the Influence of Renewable Energy, Non-Renewable Energy, Agriculture, Forest Area and Financial Development. Renew Energy 2021, 179, 12–28. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.; Liu, L.; Chen, Y.; Wang, X.; Lu, S. Coupling and Coordinated Development of New Urbanization and Agro-Ecological Environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Song, J. Analysis of the Threshold Effect of Agricultural Industrial Agglomeration and Industrial Structure Upgrading on Sustainable Agricultural Development in China. J. Clean. Prod. 2022, 341, 130818. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An Evaluation of China’s Agricultural Green Production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Pan, W.-T.; Zhuang, M.-E.; Zhou, Y.-Y.; Yang, J.-J. Research on Sustainable Development and Efficiency of China’s E-Agriculture Based on a Data Envelopment Analysis-Malmquist Model. Technol. Forecast. Soc. Change 2021, 162, 120298. [Google Scholar] [CrossRef]
- Chen, P.; Wang, S.; Liu, Y.; Tang, Q.; Wang, Y.; Song, J.; Wu, X.; Zhang, H. Improve Food, Water, and Economic Benefits in China’s Oases through Crop Switching. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103946. [Google Scholar] [CrossRef]
- Guan, Q.; Tang, J.; Davis, K.F.; Kong, M.; Feng, L.; Shi, K.; Schurgers, G. Improving Future Agricultural Sustainability by Optimizing Crop Distributions in China. PNAS Nexus 2024, 4, pgae562. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, J. An Economic Analysis on the Changes in the Distribution of Pig Production in China. Econ. Geogr. 2017, 37, 129–136+215. [Google Scholar]
- Yu, Y.; Zhang, H.; Hu, H. Analysis of the Impact of Environmental Regulation on the Distribution of Pig Production in China. Chin. Rural Econ. 2011, 8, 81–88. [Google Scholar]
- Zhao, J.; Chen, Y.; Yu, L.; Yin, C. Spatial-Temporal Characteristics and Affecting Factors of Swine Breeding Industry in China. Econ. Geogr. 2019, 39, 180–189. [Google Scholar]
- Schulte-Uebbing, L.F.; Beusen, A.H.W.; Bouwman, A.F.; de Vries, W. From Planetary to Regional Boundaries for Agricultural Nitrogen Pollution. Nature 2022, 610, 507–512. [Google Scholar] [CrossRef]
- Xin, X.; Wang, Z.; Liu, C.; Wang, J. Development Situations, Problems and Countermeasures of China’s Hog Industry in the New Stage. Issues Agric. Econ. 2023, 8, 4–16. [Google Scholar]
- Liu, S.; Liu, S. Analysis of Space-Time Changes and Motivations of Corn Production in China’s Three Plains. World Agric. 2023, 1, 89–98. [Google Scholar]
- Chen, H.; Wang, Q.; Zhou, H. Empirical Analysis of Corn Spatial Distribution Variation in China. Econ. Geogr. 2015, 35, 165–171. [Google Scholar]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia y Garcia, A.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows That Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Zhou, K.; Li, J.; Wang, Q. Evaluation on Agricultural Production Space and Layout Optimization Based on Resources and Environmental Carrying Capacity: A Case Study of Fujian Province. Geogr. Sci. 2021, 41, 280–289. [Google Scholar]
- Zhao, Y.; Bai, Z.; Liu, L.; Fan, X.; Ma, L. Impacts of Subsidy for Export of Pig to Domestic Market on the Spatial Distribution of Pig Production and Related Nitrogen Losses in China. Sci. Total Environ. 2024, 907, 167990. [Google Scholar] [CrossRef] [PubMed]
Variable Type | Pig | Corn | ||
---|---|---|---|---|
Resource endowment | Corn yield | corn yield/total national corn production | Water resource availability | total water resources/administrative area |
Water resource availability | total water resources/administrative area | Arable land allocation | effective irrigated area/population | |
Arable land allocation | effective irrigated area/population | |||
Climate change | Temperature | average annual temperature | Temperature | average annual temperature |
Precipitation | annual precipitation | Precipitation | annual precipitation | |
Industrial base | Technological level | pig slaughter volume/herd inventory | Technological level | corn yield/corn sown area |
Comparative advantage | livestock output/agriculture, forestry, animal husbandry, and fishery total output | Comparative advantage | livestock output/agriculture, forestry, animal husbandry, and fishery total output | |
Transportation accessibility | transportation mileage/administrative area | Transportation accessibility | transportation mileage/administrative area | |
Market environment | Economic development level | GDP/total population at year-end | Economic development level | GDP/total population at year-end |
Population density | total population at year-end/administrative area | Population density | total population at year-end/administrative area | |
Urbanization rate | urban population/total population at year-end | Urbanization rate | urban population/total population at year-end | |
Livestock development | livestock output value | |||
Policy measures | Fiscal investment | agricultural, forestry, and water affairs expenditure/agriculture, forestry, animal husbandry, and fishery total output | Fiscal investment | agricultural, forestry, and water affairs expenditure/agriculture, forestry, animal husbandry, and fishery total output |
Environmental regulation | environmental regulation coefficient | Environmental regulation | environmental regulation coefficient |
Year | Pig | Corn | Year | Pig | Corn | ||||
---|---|---|---|---|---|---|---|---|---|
Moran’s I | Z Value | Moran’s I | Z Value | Moran’s I | Z Value | Moran’s I | Z Value | ||
2005 | 0.077 | 0.935 | 0.519 *** | 4.714 | 2014 | 0.154 * | 1.589 | 0.570 *** | 5.251 |
2006 | 0.069 | 0.875 | 0.559 *** | 5.036 | 2015 | 0.157 * | 1.613 | 0.574 *** | 5.305 |
2007 | 0.130 * | 1.390 | 0.545 *** | 4.879 | 2016 | 0.159 * | 1.622 | 0.596 *** | 5.421 |
2008 | 0.129 * | 1.380 | 0.559 *** | 5.014 | 2017 | 0.169 ** | 1.700 | 0.589 *** | 5.338 |
2009 | 0.127 * | 1.367 | 0.523 *** | 4.705 | 2018 | 0.173 ** | 1.735 | 0.564 *** | 5.159 |
2010 | 0.130 * | 1.395 | 0.549 *** | 4.944 | 2019 | 0.166 ** | 1.673 | 0.591 *** | 5.374 |
2011 | 0.135 * | 1.434 | 0.576 *** | 5.197 | 2020 | 0.121 * | 1.311 | 0.583 *** | 5.254 |
2012 | 0.143 * | 1.493 | 0.582 *** | 5.278 | 2021 | 0.168 ** | 1.691 | 0.602 *** | 5.487 |
2013 | 0.152 * | 1.566 | 0.599 *** | 5.449 | 2022 | 0.173 ** | 1.737 | 0.600 *** | 5.438 |
Variables | SDM | SAR | SEM | OLS |
---|---|---|---|---|
Corn yield | −55.879 ** (26.249) | −66.765 *** (25.951) | −55.379 *** (25.779) | −81.559 *** (26.242) |
Water resource availability | −0.384 (1.389) | −0.773 (1.236) | −0.134 (1.347) | −0.320 (1.259) |
Arable land allocation | 74.563 *** (15.344) | 64.577 *** (14.151) | 64.324 *** (14.147) | 63.690 *** (15.400) |
Temperature | 4.592 (25.402) | −11.466 (20.872) | −0.561 (24.428) | −7.508 (25.851) |
Precipitation | 0.065 (0.077) | 0.053 (0.076) | 0.039 (0.076) | 0.023 (0.078) |
Technological level | 74.304 * (55.273) | 113.865 ** (49.496) | 107.457 * (55.538) | 97.830 * (57.430) |
Comparative advantage | 8.703 ** (3.855) | 4.806 ** (3.606) | 10.635 *** (3.807) | 6.433 * (3.813) |
Transportation accessibility | −45.712 (67.841) | −2.519 (64.471) | 1.200 (68.160) | 3.532 (68.833) |
Economic development level | −0.001(0.005) | −0.001(0.004) | −0.000 (0.004) | −0.005 (0.005) |
Population density | 0.185 (0.289) | 0.254 (0.265) | 0.208 (0.274) | −0.119 (0.313) |
Urbanization rate | −7.692 (8.963) | −0.422 (4.514) | 0.892 (5.274) | −1.195 (7.865) |
Fiscal investment | 0.515 (0.931) | 1.057 (0.854) | 1.528 * (0.864) | 1.704 * (0.930) |
Environmental regulation | −0.002 (0.003) | −0.004 (0.003) | −0.003 (0.003) | −0.005 * (0.003) |
rho | 0.475 *** (0.041) | 0.517 *** (0.041) | ||
lgt_theta | −3.362 *** (0.142) | −3.340 *** (0.038) | ||
sigma2_e | 68,901.720 *** (4329.799) | 72,572.710 *** (4571.753) | 72,040.270 *** (4553.897) | |
lambda | 0.547 *** (0.039) | |||
Observations | 558 | 558 | 558 | 558 |
R-squared | 0.495 | 0.302 | 0.237 | 0.131 |
Number of id | 31 | 31 | 31 | 31 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
Corn yield | −73.232 *** (28.221) | −229.410 ** (90.621) | −302.642 *** (102.638) |
Water resource availability | −0.938 (1.310) | −6.232 (4.139) | −7.170 (4.384) |
Arable land allocation | 85.600 *** (16.008) | 125.380 ** (58.654) | 210.979 *** (66.000) |
Temperature | −1.186 (23.588) | −73.781 (55.210) | −74.967 (56.509) |
Precipitation | 0.092 (0.076) | 0.309 (0.216) | 0.400 (0.250) |
Technological level | 79.121 * (53.183) | 35.361 * (145.441) | 114.482 * (156.575) |
Comparative advantage | 4.915 * (4.057) | −47.927 *** (11.450) | −43.012 *** (12.704) |
Transportation accessibility | −48.999 (65.669) | −18.855 (210.007) | −67.854 (228.677) |
Economic development level | −0.002 (0.005) | −0.012 (0.020) | −0.014 (0.022) |
Population density | 0.183 (0.288) | −0.254 (1.089) | −0.172 (1.168) |
Urbanization rate | −6.137 (8.397) | 20.979 (20.531) | 14.842 (20.792) |
Fiscal investment | 0.177 (1.011) | −4.478 (2.858) | −4.301 (3.383) |
Environmental regulation | −0.003 (0.003) | −0.005 (0.009) | −0.008 (0.011) |
Variables | SDM | SAR | SEM | OLS |
---|---|---|---|---|
Water resource availability | −0.190 (0.552) | −0.443 (0.498) | −0.289 (0.577) | −0.298 (0.595) |
Arable land allocation | 81.076 *** (5.354) | 79.382 *** (5.194) | 78.785 *** (5.863) | 96.861 *** (5.963) |
Temperature | −1.904 (9.794) | 11.818 (7.956) | 1.099 (9.498) | 22.807 ** (8.840) |
Precipitation | 0.029 (0.031) | 0.031 (0.031) | 0.020 (0.033) | 0.037 (0.037) |
Technological level | 77.101 *** (10.556) | 74.090 *** (10.871) | 70.757 *** (11.339) | 88.625 *** (12.904) |
Comparative advantage | 19.312 *** (2.426) | 22.259 *** (2.031) | 26.049 *** (2.603) | 38.810 *** (1.857) |
Transportation accessibility | −11.602 (26.823) | −24.492 (25.704) | −16.043 (29.103) | −27.211 (30.710) |
Economic development level | −0.000 (0.002) | −0.001 (0.096) | 0.000 (0.002) | 0.000 (0.002) |
Population density | 0.128 (0.095) | 0.002 (0.096) | −0.016 (0.099) | −0.049 (0.099) |
Urbanization rate | −3.374 (3.281) | −10.574 *** (1.965) | −5.592 ** (2.377) | −9.518 *** (2.334) |
Livestock development | 0.270 *** (0.028) | 0.246 *** (0.026) | 0.272 *** (0.029) | 0.260 *** (0.030) |
Fiscal investment | −0.387 (0.403) | −0.441 (0.352) | 0.346 (0.381) | 0.411 (0.411) |
Environmental regulation | 0.001 (0.001) | 0.001 (0.001) | −0.000 (0.001) | 0.001 (0.001) |
Rho | 0.402 *** (0.049) | 0.449 *** (0.033) | ||
lgt_theta | −2.084 *** (0.184) | −2.717 *** (0.161) | ||
sigma2_e | 10,918.540 *** (693.214) | 11,924.330 *** (746.475) | 72,040.270 *** (4553.897) | |
Lambda | 0.547 *** (0.039) | |||
Observations | 558 | 558 | 558 | 558 |
R-squared | 0.734 | 0.730 | 0.237 | 0.131 |
Number of id | 31 | 31 | 31 | 31 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
Water resource availability | −2.000 (0.550) | −0.419 (1.397) | −0.618 (1.459) |
Arable land allocation | 87.836 *** (5.521) | 97.039 *** (20.545) | 184.875 *** (23.101) |
Temperature | 4.258 (8.954) | 71.649 *** (19.024) | 75.907 *** (19.331) |
Precipitation | 0.034 (0.032) | 0.074 (0.075) | 0.108 (0.088) |
Technological level | 83.653 *** (10.603) | 88.869 ** (35.813) | 172.522 *** (40.576) |
Comparative advantage | 21.605 *** (2.241) | 29.998 *** (4.387) | 51.603 *** (4.019) |
Transportation accessibility | −16.071 (27.422) | −62.912 (82.222) | −78.983 (86.760) |
Economic development level | −0.002 (0.002) | −0.023 *** (0.007) | −0.025 *** (0.008) |
Population density | 0.073 (0.094) | −0.863 ** (0.394) | −0.790 * (0.424) |
Urbanization rate | −3.120 (3.102) | 1.174 (7.140) | −1.946 (7.104) |
Livestock development | 0.273 *** (0.028) | 0.032 (0.069) | 0.305 *** (0.077) |
Fiscal investment | −0.327 (0.425) | 0.424 (1.056) | 0.097 (1.255) |
Environmental regulation | 0.002 * (0.001) | 0.015 *** (0.003) | 0.016 *** (0.004) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Lian, H.; Fan, L. Spatiotemporal Coupling Evolution Characteristics and Driving Mechanisms of Corn Cultivation and Pig Farming in China. Land 2025, 14, 806. https://doi.org/10.3390/land14040806
Xiong X, Lian H, Fan L. Spatiotemporal Coupling Evolution Characteristics and Driving Mechanisms of Corn Cultivation and Pig Farming in China. Land. 2025; 14(4):806. https://doi.org/10.3390/land14040806
Chicago/Turabian StyleXiong, Xuezhen, Hongping Lian, and Li Fan. 2025. "Spatiotemporal Coupling Evolution Characteristics and Driving Mechanisms of Corn Cultivation and Pig Farming in China" Land 14, no. 4: 806. https://doi.org/10.3390/land14040806
APA StyleXiong, X., Lian, H., & Fan, L. (2025). Spatiotemporal Coupling Evolution Characteristics and Driving Mechanisms of Corn Cultivation and Pig Farming in China. Land, 14(4), 806. https://doi.org/10.3390/land14040806