Evaluating Natural Climate Solutions in Long-Term Climate Strategies: Opportunities for Enhanced Mitigation Across the European Union
Abstract
:1. Introduction
2. Materials and Methods
Calculation of the Mitigation Potential Score
3. Results
3.1. Natural Climate Mitigation Potential in EU
3.2. Forests and Other Ecosystems
3.3. Agriculture
3.4. Demand Side
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BE-CCS | Bioenergy with carbon capture and storage |
EU | European Union |
LTS | Long-term strategies |
LULUCF | Land-use, land-use change and forestry |
GHG | Greenhouse gas |
NDCs | Nationally determined contributions |
LD | Linear dichroism |
Appendix A
Natural Climate Solution | Definition |
---|---|
Afforestation and reforestation | Increase carbon sequestration shifting from non-forest cover to forest cover at 30% tree cover threshold. |
Reduce peatland degradation | Avoided GHG emissions (CO2, CH4, and N2O) from degradation of peatlands. |
Sustainable forest management | Avoided emissions and enhanced sequestration from the improvement of forest management, including reduced-impact logging, extended harvest rotations, increased post-harvest sequestration rates, and set-aside areas without logging activity. |
Peatland restoration | Avoided GHG emissions (CO2, CH4, and N2O) from restoration (re-wetting) of degraded peatlands. |
Reduce enteric fermentation | Improve feed conversion, antibiotics, bovine somatotropin (bST), propionate precursors, antimethanogens, and intensive grazing to avoid/reduce methane emissions from livestock enteric fermentation. |
Manure management | Avoided CH4 and N2O emissions from livestock manure management in anaerobic systems through incorporation of small-scale or large-scale anaerobic digesters. |
Nutrient management | Avoided CH4 and N2O and changes in carbon sequestration in cropland soils associated with nitrogen application through changes in fertilizer application and management practices: split fertilization, 100% crop residue incorporation, nitrification inhibitors, and reducing nitrogen fertilizer applications by 20%. |
Soil carbon croplands | Enhanced soil organic carbon sequestration by shifting from current management to no-till management with an input scenario consistent with cover cropping. |
Soil carbon grasslands | Enhanced soil organic carbon sequestration in managed pastures, by shifting from current practices to improved sustainable management with light to moderate grazing pressure and at least one improvement. For rangelands, a shift from current management defined by land degradation to nominally managed. |
Agroforestry | Carbon sequestration from adding aboveground woody carbon storage in agriculture systems (areas with <25% tree cover). |
Biochar application | Enhanced carbon sequestration by amending agricultural soils with biochar, which increases the agricultural soil carbon pool by converting rapid-mineralizing carbon (crop residue biomass) to persistent carbon (charcoal) through pyrolysis. |
Food waste reduction | Emissions reductions from diverted agricultural production (excluding land-use change) from reduced food loss and wastage from all stages of production, distribution, retail, and consumption through the implementation of measures such as improved storage and transport systems, generation of public awareness, and changing consumer behaviors. |
Healthy diets | Emissions reductions from diverted agricultural production (excluding land-use change) from the adoption of sustainable healthy diets: (a) maintain a 2250 calorie per day nutritional regime; (b) converge to healthy daily protein requirement, limiting meat-based protein consumption to 57 g/day; and (c) purchase locally produced food when available. |
References
- EEA. National Emissions Reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism. Available online: https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-18 (accessed on 7 August 2022).
- Bombelli, A.; Di Paola, A.; Chiriacò, M.V.; Perugini, L.; Castaldi, S.; Valentini, R. Climate Change, Sustainable Agriculture and Food Systems: The World After the Paris Agreement. In Achieving the Sustainable Development Goals Through Sustainable Food Systems; Valentini, R., Sievenpiper, J.L., Antonelli, M., Dembska, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 25–34. ISBN 978-3-030-23968-8. [Google Scholar]
- European Commission. EU Reference Scenario 2020: Energy, Transport and GHG Emissions: Trends to 2050; Publications Office of the European Union: Luxembourg, 2021.
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Schulte, I.; Eggers, J.; Nielsen, J.Ø.; Fuss, S. What Influences the Implementation of Natural Climate Solutions? A Systematic Map and Review of the Evidence. Environ. Res. Lett. 2022, 17, 013002. [Google Scholar] [CrossRef]
- Smith, P.; Campbell, D.; Cherubini, F.; Grassi, G.; Lwasa, S.; McElwee, P.; Saigusa, N.; Soussana, J.-F.; Nkem, J.; Calvin, K.; et al. Interlinkages between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-Offs and Integrated Response Options. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; p. 122. [Google Scholar]
- Frank, S.; Gusti, M.; Havlík, P.; Lauri, P.; DiFulvio, F.; Forsell, N.; Hasegawa, T.; Krisztin, T.; Palazzo, A.; Valin, H. Land-Based Climate Change Mitigation Potentials within the Agenda for Sustainable Development. Environ. Res. Lett. 2021, 16, 024006. [Google Scholar] [CrossRef]
- European Union. Long-Term Low Greenhouse Gas Emission Development Strategy of the European Union and Its Member States Submission by Croatia and the European Commission on Behalf of the European Union and Its Member States; European Union: Zagreb, Croatia, 2020. [Google Scholar]
- UNFCCC. Adoption of the Paris Agreement. In Proceedings of the Conference of the Parties Twenty-First Session Paris, Paris, France, 30 November–11 December 2015. [Google Scholar]
- European Union. Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Costa, C.; Wollenberg, E.; Benitez, M.; Newman, R.; Gardner, N.; Bellone, F. Roadmap for Achieving Net-Zero Emissions in Global Food Systems by 2050. Sci. Rep. 2022, 12, 15064. [Google Scholar] [CrossRef]
- Walker, W.S.; Gorelik, S.R.; Cook-Patton, S.C.; Baccini, A.; Farina, M.K.; Solvik, K.K.; Ellis, P.W.; Sanderman, J.; Houghton, R.A.; Leavitt, S.M.; et al. The Global Potential for Increased Storage of Carbon on Land. Proc. Natl. Acad. Sci. USA 2022, 119, e2111312119. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of Soil Organic Carbon Stocks under Future Climate and Land Cover Changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef]
- Chapman, M.; Walker, W.S.; Cook-Patton, S.C.; Ellis, P.W.; Farina, M.; Griscom, B.W.; Baccini, A. Large Climate Mitigation Potential from Adding Trees to Agricultural Lands. Glob. Change Biol. 2020, 26, 4357–4365. [Google Scholar] [CrossRef]
- Baumgarten, A.; Haslmayr, H.-P.; Schwarz, M.; Huber, S.; Weiss, P.; Obersteiner, E.; Aust, G.; Englisch, M.; Horvath, D.; Leitgeb, E.; et al. Organic Soil Carbon in Austria—Status Quo and Foreseeable Trends. Geoderma 2021, 402, 115214. [Google Scholar] [CrossRef]
- Pellerin, S.; Bamière, L.; Angers, D.; Béline, F.; Benoit, M.; Butault, J.-P.; Chenu, C.; Colnenne-David, C.; De Cara, S.; Delame, N.; et al. Identifying Cost-Competitive Greenhouse Gas Mitigation Potential of French Agriculture. Environ. Sci. Policy 2017, 77, 130–139. [Google Scholar] [CrossRef]
- Chiti, T.; Blasi, E.; Pellis, G.; Perugini, L.; Chiriacò, M.V.; Valentini, R. Soil Organic Carbon Pool’s Contribution to Climate Change Mitigation on Marginal Land of a Mediterranean Montane Area in Italy. J. Environ. Manag. 2018, 218, 593–601. [Google Scholar] [CrossRef]
- Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J.; et al. Land-based Measures to Mitigate Climate Change: Potential and Feasibility by Country. Glob. Change Biol. 2021, 27, 6025–6058. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report, 1st ed.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-05821-7. [Google Scholar]
- United Nations Environment Programme. The Emissions Gap Report 2017: A UN Environment Synthesis Report; The Emissions Gap Report: Nairobi, Kenya, 2017; ISBN 978-92-1-047969-1. [Google Scholar]
- Roe, S.; Streck, C.; Obersteiner, M.; Frank, S.; Griscom, B.; Drouet, L.; Fricko, O.; Gusti, M.; Harris, N.; Hasegawa, T.; et al. Contribution of the Land Sector to a 1.5 °C World. Nat. Clim. Change 2019, 9, 817–828. [Google Scholar] [CrossRef]
- Daigneault, A.; Favero, A. Global Forest Management, Carbon Sequestration and Bioenergy Supply under Alternative Shared Socioeconomic Pathways. Land Use Policy 2021, 103, 105302. [Google Scholar] [CrossRef]
- European Commission. National Long-Term Strategies. Available online: https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en (accessed on 1 December 2022).
- UNFCCC. Long-Term Strategies Portal. Available online: https://unfccc.int/process/the-paris-agreement/long-term-strategies (accessed on 1 December 2022).
- Hasegawa, T.; Fujimori, S.; Frank, S.; Humpenöder, F.; Bertram, C.; Després, J.; Drouet, L.; Emmerling, J.; Gusti, M.; Harmsen, M.; et al. Land-Based Implications of Early Climate Actions without Global Net-Negative Emissions. Nat. Sustain. 2021, 4, 1052–1059. [Google Scholar] [CrossRef]
- European Commission. Regulation 1305/2013 of the European Parliament and of the Council of 17 December 2013 on Support for Rural Development by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Council Regulation 1698/2005; European Commission: Brussels, Belgium, 2013.
- Mosquera-Losada, M.R.; Rodríguez-Rigueiro, F.J.; Santiago-Freijanes, J.J.; Rigueiro-Rodríguez, A.; Silva-Losada, P.; Pantera, A.; Fernández-Lorenzo, J.L.; González-Hernández, M.P.; Romero-Franco, R.; Aldrey-Vázquez, J.A.; et al. European Agroforestry Policy Promotion in Arable Mediterranean Areas. Land Use Policy 2022, 120, 106274. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. COM(2020) 381 Final; European Commission: Brussels, Belgium, 2020.
- EEA. Available online: https://www.eea.europa.eu/en/analysis/maps-and-charts/eu-agricultural-emissions-by-source-2 (accessed on 28 February 2025).
- Beach, R.H.; Creason, J.; Ohrel, S.B.; Ragnauth, S.; Ogle, S.; Li, C.; Ingraham, P.; Salas, W. Global Mitigation Potential and Costs of Reducing Agricultural Non-CO2 Greenhouse Gas Emissions through 2030. J. Integr. Environ. Sci. 2015, 12, 87–105. [Google Scholar] [CrossRef]
- Griscom, B.W.; Busch, J.; Cook-Patton, S.C.; Ellis, P.W.; Funk, J.; Leavitt, S.M.; Lomax, G.; Turner, W.R.; Chapman, M.; Engelmann, J.; et al. National Mitigation Potential from Natural Climate Solutions in the Tropics. Phil. Trans. R. Soc. B 2020, 375, 20190126. [Google Scholar] [CrossRef]
- Di Lallo, G.; Chiriacò, M.V.; Tarasova, E.; Köhl, M.; Perugini, L. The Land Sector in the Low Carbon Emission Strategies in the European Union: Role and Future Expectations. Climate Policy 2023, 24, 586–600. [Google Scholar] [CrossRef]
- Gutsch, M.; Lasch-Born, P.; Kollas, C.; Suckow, F.; Reyer, C.P.O. Balancing Trade-Offs between Ecosystem Services in Germany’s Forests under Climate Change. Environ. Res. Lett. 2018, 13, 045012. [Google Scholar] [CrossRef]
- Schwaiger, F.; Poschenrieder, W.; Biber, P.; Pretzsch, H. Ecosystem Service Trade-Offs for Adaptive Forest Management. Ecosyst. Serv. 2019, 39, 100993. [Google Scholar] [CrossRef]
- Sabatini, F.M.; de Andrade, R.B.; Paillet, Y.; Ódor, P.; Bouget, C.; Campagnaro, T.; Gosselin, F.; Janssen, P.; Mattioli, W.; Nascimbene, J.; et al. Trade-offs between Carbon Stocks and Biodiversity in European Temperate Forests. Glob. Change Biol. 2019, 25, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Forest Europe. State of Europe’s Forests 2020; Forest Europe: Bratislava, Slovakia, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the New EU Forest Strategy for 2030; European Commission: Brussels, Belgium, 2021.
- Biber, P.; Felton, A.; Nieuwenhuis, M.; Lindbladh, M.; Black, K.; Bahýl’, J.; Bingöl, Ö.; Borges, J.G.; Botequim, B.; Brukas, V.; et al. Forest Biodiversity, Carbon Sequestration, and Wood Production: Modeling Synergies and Trade-Offs for Ten Forest Landscapes Across Europe. Front. Ecol. Evol. 2020, 8, 547696. [Google Scholar] [CrossRef]
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Mika, M.; Leń, P. Conversion of Agricultural and Forest Land to Other Purposes in the Context of Land Protection: Evidence from Polish Experience. Land Use Policy 2020, 95, 104614. [Google Scholar] [CrossRef]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.; Lauk, C.; Harper, R.; Tubiello, F.N.; de Siqueira Pinto, A.; Jafari, M.; Sohi, S.; et al. How Much Land-Based Greenhouse Gas Mitigation Can Be Achieved without Compromising Food Security and Environmental Goals? Glob. Change Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Delacote, P.; Hurmekoski, E.; Kunttu, J.; Matthews, R.; Mäkipää, R.; Mosley, F.; Perugini, L.; Reyer, C.P.O.; Roe, S.; et al. Forest-Based Climate Change Mitigation and Adaptation in Europe; From Science to Policy; European Forest Institute: Joensuu, Finland, 2022. [Google Scholar]
- de Ruiter, H.; Kastner, T.; Nonhebel, S. European Dietary Patterns and Their Associated Land Use: Variation between and within Countries. Food Policy 2014, 44, 158–166. [Google Scholar] [CrossRef]
Mitigation Classification | Restoration | Management | Protection | |||||
---|---|---|---|---|---|---|---|---|
Natural Climate Solution | Afforestation and Reforestation | Peatland Restoration | Sustainable Forest Management | Reduce Peatland Degradation | ||||
Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | |
Austria | ++ | 1.7 | + | 0.0 | [+++++] | 4.7 | + | 0.0 |
Belgium | + | 0.4 | + | 0.0 | [++] | 1.6 | [+] | 0.0 |
Bulgaria | [+] | 0.4 | [++] | 0.0 | [+] | 1.6 | [+] | 0.0 |
Croatia | [++] | 1.1 | + | 0.0 | [++] | 1.5 | + | 0.0 |
Cyprus | [+] | 0.0 | + | 0.0 | + | 0.0 | + | 0.0 |
Czech Republic | [+++] | 2.4 | [+] | 0.0 | [+++] | 2.7 | + | 0.0 |
Denmark | [+] | 0.6 | ++++ | 5.5 | +++++ | 8.1 | [+] | 0.0 |
Estonia | + | 0.8 | [+++++] | 12.6 | [++] | 2.5 | [+] | 1.1 |
Finland | [+] | 3.5 | +++++ | 44.7 | +++ | 25.6 | [+] | 0.0 |
France | [++] | 13.4 | [+] | 4.0 | [++] | 11.1 | [+] | 0.4 |
Germany | [++] | 5.4 | +++++ | 36.7 | [+++] | 17.0 | [+] | 2.2 |
Greece | ++ | 2.5 | + | 0.0 | ++ | 2.3 | + | 0.0 |
Hungary | [+] | 1.1 | + | 1.3 | [++] | 1.5 | + | 0.1 |
Ireland | [+] | 0.6 | [+++++] | 11.6 | + | 1.1 | + | 0.0 |
Italy | [++] | 6.4 | + | 0.0 | + | 2.9 | + | 0.0 |
Latvia | [++] | 1.5 | +++++ | 11.2 | [+++] | 4.2 | + | 1.1 |
Lithuania | [++] | 1.1 | [+++++] | 7.7 | [++] | 1.9 | [+] | 0.8 |
Luxembourg | + | 0.0 | + | 0.0 | [++] | 0.1 | + | 0.0 |
Malta | [+] | 0.0 | + | 0.0 | + | 0.0 | + | 0.0 |
Netherlands | [+] | 0.2 | +++++ | 9.1 | + | 0.5 | + | 0.1 |
Portugal | [++] | 1.6 | + | 0.0 | [+++] | 5.0 | + | 0.0 |
Slovakia | [++] | 1.0 | [+] | 0.0 | [+++++] | 3.1 | [+] | 0.0 |
Slovenia | +++ | 0.6 | + | 0.0 | [+++] | 1.1 | + | 0.0 |
Spain | [++] | 10.4 | + | 0.2 | [++] | 11.2 | + | 0.0 |
Sweden | ++ | 5.2 | [++] | 8.8 | [+++++] | 28.3 | [+] | 0.0 |
Mitigation Classification | Emissions Reduction | Carbon Sequestration | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Natural Climate Solution | Reduce Enteric Fermentation | Manure Management | Nutrient Management | Soil Carbon Croplands | Soil Carbon Grasslands | Agroforestry | Biochar Application | |||||||
Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | |
Austria | [+] | 0.5 | [+] | 0.3 | + | 0.2 | [++] | 1.2 | [+++] | 2.0 | +++ | 2.7 | [+++] | 1.9 |
Belgium | [+] | 0.6 | [++] | 0.8 | + | 0.4 | [++] | 1.5 | [++] | 1.1 | [++] | 1.4 | [++] | 0.7 |
Bulgaria | [+] | 0.6 | ++ | 0.8 | [+] | 0.4 | ++ | 1.5 | ++ | 1.1 | ++ | 1.4 | ++ | 0.7 |
Croatia | [+] | 0.2 | [+] | 0.2 | [+] | 0.4 | [+++] | 1.8 | [++] | 0.9 | [+++++] | 4.2 | [++] | 1.7 |
Cyprus | + | 0.0 | [+] | 0.0 | + | 0.0 | + | 0.1 | + | 0.0 | [+++++] | 0.9 | + | 0.0 |
Czech Republic | [+] | 0.5 | [+] | 0.2 | + | 0.3 | [++] | 1.8 | [++] | 1.7 | +++++ | 6.2 | [+++] | 2.4 |
Denmark | + | 0.5 | ++ | 1.4 | + | 0.2 | +++ | 3.2 | + | 0.2 | +++ | 4.4 | ++ | 1.8 |
Estonia | + | 0.0 | [+] | 0.0 | + | 0.0 | + | 1.5 | + | 0.2 | ++ | 2.0 | [+] | 0.4 |
Finland | + | 0.3 | [+] | 0.2 | [+] | 0.4 | + | 4.0 | + | 0.2 | + | 1.3 | [+] | 0.6 |
France | [+] | 4.4 | [+] | 1.9 | + | 3.2 | ++ | 10.7 | ++ | 7.6 | [+] | 0.7 | [+++] | 20.8 |
Germany | [+] | 3.2 | [+] | 3.7 | + | 3.4 | ++ | 9.8 | ++ | 6.7 | +++ | 22.0 | [++] | 10.2 |
Greece | + | 0.5 | + | 0.4 | + | 0.3 | ++ | 1.3 | ++ | 1.4 | +++++ | 7.4 | [++] | 2.2 |
Hungary | [+] | 0.1 | [+] | 0.2 | + | 0.2 | [++] | 1.4 | [+] | 0.6 | +++++ | 10.3 | [++++] | 8.0 |
Ireland | [+] | 1.4 | + | 0.5 | [++] | 1.6 | [+] | 0.6 | [++] | 1.5 | [++] | 3.6 | + | 0.3 |
Italy | [+] | 1.8 | [+] | 1.8 | + | 2.1 | [++] | 5.9 | [+] | 3.1 | +++++ | 28.0 | [++] | 8.2 |
Latvia | [+] | 0.0 | [+] | 0.0 | + | 0.0 | ++ | 2.5 | ++ | 1.8 | ++ | 3.0 | [+] | 0.9 |
Lithuania | [+] | 0.0 | [+] | 0.0 | [+] | 0.0 | [+++] | 4.2 | [+] | 0.9 | ++++ | 5.0 | [++] | 1.6 |
Luxembourg | [+] | 0.1 | [+] | 0.0 | [+] | 0.0 | [++] | 0.1 | ++ | 0.1 | [++] | 0.1 | + | 0.0 |
Malta | [+] | 0.0 | [+] | 0.0 | + | 0.0 | + | 0.0 | + | 0.0 | + | 0.0 | + | 0.0 |
Netherlands | [++] | 1.2 | [++] | 2.9 | ++ | 1.2 | [++] | 1.2 | [+] | 1.1 | ++ | 2.1 | + | 0.5 |
Portugal | [+] | 0.5 | [+] | 0.4 | + | 0.6 | + | 0.5 | + | 0.1 | +++++ | 10.6 | [+] | 0.6 |
Slovak Republic | [+] | 0.0 | [+] | 0.0 | + | 0.1 | [++] | 1.0 | [++] | 0.6 | [+++++] | 3.4 | [+++] | 1.9 |
Slovenia | [+] | 0.1 | [+] | 0.1 | + | 0.1 | [+++] | 0.5 | [++] | 0.2 | +++++ | 1.3 | [++] | 0.2 |
Spain | [+] | 2.0 | [+] | 4.5 | + | 3.3 | [+] | 5.9 | [+] | 4.4 | [+++++] | 78.2 | [+] | 7.6 |
Sweden | [+] | 0.4 | [+] | 0.1 | + | 0.4 | ++ | 4.4 | + | 1.8 | ++ | 4.1 | [+] | 1.1 |
Mitigation Classification | Demand Side | |||
---|---|---|---|---|
Natural Climate Solution | Food Waste Reduction | Healthy Diets | ||
Score | MtCO2eq yr−1 | Score | MtCO2eq yr−1 | |
Austria | [++] | 1.6 | [+++++] | 4.2 |
Belgium | [+++] | 2.1 | [+++++] | 5.6 |
Bulgaria | +++ | 2.1 | +++++ | 5.6 |
Croatia | [++] | 0.6 | [++] | 1.5 |
Cyprus | ++ | 0.1 | +++ | 0.4 |
Czech Republic | [+] | 0.6 | [++] | 1.6 |
Denmark | [++] | 1.3 | [+++] | 3.5 |
Estonia | + | 0.2 | [+] | 0.5 |
Finland | + | 1.2 | [+] | 3.3 |
France | [+++] | 14.9 | [+++++] | 39.1 |
Germany | [++] | 11.9 | [++++] | 31.4 |
Greece | ++ | 1.7 | [+++] | 4.5 |
Hungary | [+] | 0.9 | [++] | 2.5 |
Ireland | [+] | 1.3 | [++] | 3.5 |
Italy | +++ | 11.3 | [+++++] | 29.7 |
Latvia | + | 0.2 | [+] | 0.6 |
Lithuania | [+] | 0.4 | [++] | 1.0 |
Luxembourg | [+++] | 0.2 | [+++++] | 0.6 |
Malta | [+] | 0.1 | [+++++] | 0.2 |
Netherlands | [+++] | 3.4 | [+++++] | 9.1 |
Portugal | [++] | 2.0 | [+++] | 5.3 |
Slovak Republic | [+] | 0.4 | [++] | 1.1 |
Slovenia | ++ | 0.3 | [+++] | 0.8 |
Spain | [+] | 6.5 | [++] | 17.2 |
Sweden | + | 1.9 | [++] | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lallo, G.; De Notaris, C.; Chiriacò, M.V. Evaluating Natural Climate Solutions in Long-Term Climate Strategies: Opportunities for Enhanced Mitigation Across the European Union. Land 2025, 14, 825. https://doi.org/10.3390/land14040825
Di Lallo G, De Notaris C, Chiriacò MV. Evaluating Natural Climate Solutions in Long-Term Climate Strategies: Opportunities for Enhanced Mitigation Across the European Union. Land. 2025; 14(4):825. https://doi.org/10.3390/land14040825
Chicago/Turabian StyleDi Lallo, Giulio, Chiara De Notaris, and Maria Vincenza Chiriacò. 2025. "Evaluating Natural Climate Solutions in Long-Term Climate Strategies: Opportunities for Enhanced Mitigation Across the European Union" Land 14, no. 4: 825. https://doi.org/10.3390/land14040825
APA StyleDi Lallo, G., De Notaris, C., & Chiriacò, M. V. (2025). Evaluating Natural Climate Solutions in Long-Term Climate Strategies: Opportunities for Enhanced Mitigation Across the European Union. Land, 14(4), 825. https://doi.org/10.3390/land14040825