Scale-Dependent Diversity Patterns in Subalpine Grasslands: Homogenization vs. Complexity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling Design
2.3. Vegetation Data
2.4. Data Analysis
2.4.1. Scale-Dependent Alpha and Beta Diversity
2.4.2. Fine-Scale Heterogeneity of Dominant Species
3. Results
3.1. Regional (Coarse-Scale) Diversity and Species Abundances
3.2. Regional (Coarse-Scale) vs. Local (Fine-Scale) Beta Diversity
3.3. Dominants’ Heterogeneity and Diversity Dependence
4. Discussion
4.1. Alpha and Beta Diversity Patterns
4.2. Drivers and Constraints of Species Assembly
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | Compositional Diversity |
NRC | Number of Realized Combinations |
References
- Korzeniak, J. Mountain Nardus Stricta Grasslands as a Relic of Past Farming—The Effects of Grazing Abandonment in Relation to Elevation and Spatial Scale. Folia Geobot. 2016, 51, 93–113. [Google Scholar] [CrossRef]
- Austrheim, G.; Gunilla, E.; Olsson, A.; Grøntvedt, E. Land-Use Impact on Plant Communities in Semi-Natural Sub-Alpine Grasslands of Budalen, Central Norway. Biol. Conserv. 1999, 87, 369–379. [Google Scholar] [CrossRef]
- Tasser, E.; Tappeiner, U. Impact of Land Use Changes on Mountain Vegetation. Appl. Veg. Sci. 2002, 5, 173–184. [Google Scholar] [CrossRef]
- Poschlod, P.; Bakker, J.P.; Kahmen, S. Changing Land Use and Its Impact on Biodiversity. Basic Appl. Ecol. 2005, 6, 93–98. [Google Scholar] [CrossRef]
- Komac, B.; Alados, C.L.; Bueno, C.G.; Gómez, D. Spatial Patterns of Species Distributions in Grazed Subalpine Grasslands. Plant Ecol. 2011, 212, 519–529. [Google Scholar] [CrossRef]
- Galvánek, D.; Lepš, J. The Effect of Management on Productivity, Litter Accumulation and Seedling Recruitment in a Carpathian Mountain Grassland. Plant Ecol. 2012, 213, 523–533. [Google Scholar] [CrossRef]
- Anderson, R.M. Biodiversity Change in the Irish Uplands—The Effects of Grazing Management; University College Cork: Cork, Ireland, 2013; Available online: https://hdl.handle.net/10468/1290 (accessed on 1 April 2025).
- Gartzia, M.; Alados, C.L.; Pérez-Cabello, F. Assessment of the Effects of Biophysical and Anthropogenic Factors on Woody Plant Encroachment in Dense and Sparse Mountain Grasslands Based on Remote Sensing Data. Prog. Phys. Geogr. Earth Environ. 2014, 38, 201–217. [Google Scholar] [CrossRef]
- Czortek, P.; Eycott, A.E.; Grytnes, J.-A.; Delimat, A.; Kapfer, J.; Jaroszewicz, B. Effects of Grazing Abandonment and Climate Change on Mountain Summits Flora: A Case Study in the Tatra Mts. Plant Ecol. 2018, 219, 261–276. [Google Scholar] [CrossRef]
- Mayer, R.; Erschbamer, B. Long-Term Effects of Grazing on Subalpine and Alpine Grasslands in the Central Alps, Austria. Basic Appl. Ecol. 2017, 24, 9–18. [Google Scholar] [CrossRef]
- Malatesta, L.; Tardella, F.M.; Tavoloni, M.; Postiglione, N.; Piermarteri, K.; Catorci, A. Land Use Change in the High Mountain Belts of the Central Apennines Led to Marked Changes of the Grassland Mosaic. Appl. Veg. Sci. 2019, 22, 243–255. [Google Scholar] [CrossRef]
- Mysterud, A. The Concept of Overgrazing and Its Role in Management of Large Herbivores. Wildl. Biol. 2006, 12, 129–141. [Google Scholar] [CrossRef]
- Gong Li, S.; Harazono, Y.; Oikawa, T.; Zhao, H.L.; Ying He, Z.; Chang, X.L. Grassland Desertification by Grazing and the Resulting Micrometeorological Changes in Inner Mongolia. Agric. For. Meteorol. 2000, 102, 125–137. [Google Scholar] [CrossRef]
- Velev, N.; Apostolova, I. Successional Changes of Nardus Stricta Communities in the Central Balkan Range (Bulgaria). Phytol. Balc. 2008, 14, 75–84. [Google Scholar]
- Mastrogianni, A.; Kiziridis, D.A.; Karadimou, E.; Pleniou, M.; Xystrakis, F.; Tsiftsis, S.; Tsiripidis, I. Community-Level Differentiation of Grime’s CSR Strategies along a Post-Abandonment Secondary Successional Gradient. Flora 2023, 308, 152399. [Google Scholar] [CrossRef]
- Grant, S.A.; Torvell, L.; Sim, E.M.; Small, J.L.; Armstrong, R.H. Controlled Grazing Studies on Nardus Grassland: Effects of Between-Tussock Sward Height and Species of Grazer on Nardus Utilization and Floristic Composition in Two Fields in Scotland. J. Appl. Ecol. 1996, 33, 1053–1064. [Google Scholar] [CrossRef]
- Hulme, P.D.; Pakeman, R.J.; Torvell, L.; Fisher, J.M.; Gordon, I.J. The Effects of Controlled Sheep Grazing on the Dynamics of Upland Agrostis–Festuca Grassland. J. Appl. Ecol. 1999, 36, 886–900. [Google Scholar] [CrossRef]
- Ross, L.C.; Woodin, S.J.; Hester, A.J.; Thompson, D.B.A.; Birks, H.J.B. Biotic Homogenization of Upland Vegetation: Patterns and Drivers at Multiple Spatial Scales over Five Decades. J. Veg. Sci. 2012, 23, 755–770. [Google Scholar] [CrossRef]
- Buzhdygan, O.Y.; Tietjen, B.; Rudenko, S.S.; Nikorych, V.A.; Petermann, J.S. Direct and Indirect Effects of Land-Use Intensity on Plant Communities across Elevation in Semi-Natural Grasslands. PLoS ONE 2020, 15, e0231122. [Google Scholar] [CrossRef]
- Zeidler, M.; Banaš, M. Bilberry Expansion in the Changing Subalpine Belt. Plants 2024, 13, 2633. [Google Scholar] [CrossRef]
- Myster, R.W.; Pickett, S.T.A. Initial Conditions, History and Successional Pathways in Ten Contrasting Old Fields. Am. Midl. Nat. 1990, 124, 231–238. [Google Scholar] [CrossRef]
- Palaj, A.; Kollár, J.; Michalová, M. Changes in the Nardus Grasslands in the (Sub)Alpine Zone of Western Carpathians over the Last Decades. Biologia 2024, 79, 1081–1090. [Google Scholar] [CrossRef]
- Trindade, V.L.; Ferreira, M.C.; Costa, L.S.; Amaral, E.d.J.; Bustamante, M.M.d.C.; Munhoz, C.B.R. The Effect of Woody Encroachment on Taxonomic and Functional Diversity and Soil Properties in Cerrado Wetlands. Flora 2024, 316, 152524. [Google Scholar] [CrossRef]
- Klinkovská, K.; Kučerová, A.; Pustková, Š.; Rohel, J.; Slachová, K.; Sobotka, V.; Szokala, D.; Danihelka, J.; Kočí, M.; Šmerdová, E.; et al. Subalpine Vegetation Changes in the Eastern Sudetes (1973–2021): Effects of Abandonment, Conservation Management and Avalanches. Appl. Veg. Sci. 2023, 26, e12711. [Google Scholar] [CrossRef]
- Pedashenko, H.; Apostolova, I.; Oldeland, J. The Effects of Livestock Numbers and Land Cover Transformation Processes on Rangelands in the Balkan Mountains between 1947 and 2012. Tuexenia 2015, 35, 417–432. [Google Scholar] [CrossRef]
- De Toma, A.; Carboni, M.; Bazzichetto, M.; Malavasi, M.; Cutini, M. Dynamics of Dwarf Shrubs in Mediterranean High-Mountain Ecosystems. J. Veg. Sci. 2022, 33, e13143. [Google Scholar] [CrossRef]
- Zeidler, M.; Husek, V.; Banaš, M.; Krahulec, F. Homogenization and Species Compositional Shifts in Subalpine Vegetation during the 60-Year Period. Acta Soc. Bot. Pol. 2023, 92, 1–10. [Google Scholar] [CrossRef]
- Austrheim, G.; Eriksson, O. Plant Species Diversity and Grazing in the Scandinavian Mountains—Patterns and Processes at Different Spatial Scales. Ecography 2001, 24, 683–695. [Google Scholar] [CrossRef]
- Terziyska, T.; Tsakalos, J.; Bartha, S.; Apostolova, I.; Sopotlieva, D.; Zimmermann, M.Z.; Szabo, G.; Wellstein, C. Species and Functional Differences between Subalpine Grasslands with and without Dwarf Shrub Encroachment. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2020, 154, 568–577. [Google Scholar] [CrossRef]
- Anderson, M.J.; Crist, T.O.; Chase, J.M.; Vellend, M.; Inouye, B.D.; Freestone, A.L.; Sanders, N.J.; Cornell, H.V.; Comita, L.S.; Davies, K.F.; et al. Navigating the Multiple Meanings of β Diversity: A Roadmap for the Practicing Ecologist. Ecol. Lett. 2011, 14, 19–28. [Google Scholar] [CrossRef]
- Legendre, P.; De Cáceres, M. Beta Diversity as the Variance of Community Data: Dissimilarity Coefficients and Partitioning. Ecol. Lett. 2013, 16, 951–963. [Google Scholar] [CrossRef]
- McGill, B.J.; Dornelas, M.; Gotelli, N.J.; Magurran, A.E. Fifteen Forms of Biodiversity Trend in the Anthropocene. Trends Ecol. Evol. 2015, 30, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Götzenberger, L.; de Bello, F.; Bråthen, K.A.; Davison, J.; Dubuis, A.; Guisan, A.; Lepš, J.; Lindborg, R.; Moora, M.; Pärtel, M.; et al. Ecological Assembly Rules in Plant Communities—Approaches, Patterns and Prospects. Biol. Rev. 2012, 87, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Olff, H.; Bakker, J.P. Do Intrinsically Dominant and Subordinate Species Exist? A Test Statistic for Field Data. Appl. Veg. Sci. 1998, 1, 15–20. [Google Scholar] [CrossRef]
- Deák, B.; Valkó, O.; Kelemen, A.; Török, P.; Miglécz, T.; Ölvedi, T.; Lengyel, S.; Tóthmérész, B. Litter and Graminoid Biomass Accumulation Suppresses Weedy Forbs in Grassland Restoration. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2011, 145, 730–737. [Google Scholar] [CrossRef]
- Alves, C.; Marcos, B.; Gonçalves, J.; Verburg, P.; Pellissier, L.; Lomba, A. Co-Occurrences and Species Distribution Models Show the Structuring Role of Dominant Species in the Vez Watershed, in Portugal. Ecol. Indic. 2023, 151, 110306. [Google Scholar] [CrossRef]
- Zuo, X.; Gornish, E.S.; Koerner, S.E.; van der Plas, F.; Wang, S.; Liang, M. Dominant Species Determine Grazing Effects on the Stability of Herbaceous Community Production at Multiple Scales in Drylands. J. Appl. Ecol. 2023, 60, 1917–1928. [Google Scholar] [CrossRef]
- Juhász-Nagy, P.; Podani, J. Information Theory Methods for the Study of Spatial Processes and Succession. Vegetatio 1983, 51, 129–140. [Google Scholar] [CrossRef]
- Juhász-Nagy, P. Notes on Compositional Diversity. In Intermediate Disturbance Hypothesis in Phytoplankton Ecology; Padisák, J., Reynolds, C.S., Sommer, U., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 173–182. [Google Scholar] [CrossRef]
- Velev, S. Climatic Zoning. 2002. Available online: https://cir.nii.ac.jp/crid/1574231874009440768 (accessed on 4 March 2025).
- Nori, S.; Gemini, M. The Common Agricultural Policy Vis-à-Vis European Pastoralists: Principles and Practices. Pastor. Res. Policy Pract. 2011, 1, 27. [Google Scholar] [CrossRef]
- Prévosto, B.; Kuiters, L.; Bernhardt-Römermann, M.; Dölle, M.; Schmidt, W.; Hoffmann, M.; Van Uytvanck, J.; Bohner, A.; Kreiner, D.; Stadler, J.; et al. Impacts of Land Abandonment on Vegetation: Successional Pathways in European Habitats. Folia Geobot. 2011, 46, 303–325. [Google Scholar] [CrossRef]
- Bartha, S.; Campetella, G.; Canullo, R.; Bodis, J.; Mucina, L. On the Importance of Fine-Scale Spatial Complexity in Vegetation Restoration Studies. Int. J. Ecol. Environ. Sci. 2004, 30, 101–116. [Google Scholar]
- Bartha, S.; Campetella, G.; Kertesz, M.; Hahn, I.; Kroel-Dulay, G.; Redei, T.; Kun, A.; Viragh, K.; Fekete, G.; Kovacs-Lang, E. Beta Diversity and Community Differentiation in Dry Perennial Sand Grasslands. Ann. Bot. 2011, 1, 9–18. [Google Scholar]
- Virágh, K.; Horváth, A.; Bartha, S.; Somodi, I. A Multiscale Methodological Approach for Monitoring the Effectiveness of Grassland Management. Community Ecol. 2008, 9, 237–246. [Google Scholar] [CrossRef]
- Podani, J. Analysis of Mapped and Simulated Vegetation Patterns by Meansof Computerized Sampling Techniques. Acta Bot. Hung. 1984, 30, 403–425. [Google Scholar]
- Euro+Med PlantBase Home. Available online: https://www.emplantbase.org/home.html (accessed on 4 March 2025).
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Clark, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial PRIMER-E: Plymouth; Primer-E Ltd.: Devon, UK, 2015. [Google Scholar]
- SigmaPlot v16 (Upgrade from v15). Grafiti LLC. Available online: https://grafiti.com/product/sigmaplot-v15/ (accessed on 4 March 2025).
- Grime, J.P. Benefits of Plant Diversity to Ecosystems: Immediate, Filter and Founder Effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Arnillas, C.A.; Borer, E.T.; Seabloom, E.W.; Alberti, J.; Baez, S.; Bakker, J.D.; Boughton, E.H.; Buckley, Y.M.; Bugalho, M.N.; Donohue, I.; et al. Opposing Community Assembly Patterns for Dominant and Nondominant Plant Species in Herbaceous Ecosystems Globally. Ecol. Evol. 2021, 11, 17744–17761. [Google Scholar] [CrossRef]
- Bartha, S.; Házi, J.; Purger, D.; Zimmermann, Z.; Szabó, G.; Guller, Z.E.; Csathó, A.I.; Csete, S. Beta Diversity Is Better—Microhabitat Diversity and Multiplet Diversity Offer Novel Insights into Plant Coexistence in Grassland Restoration. Diversity 2024, 16, 769. [Google Scholar] [CrossRef]
- Tsakalos, J.L.; Chelli, S.; Campetella, G.; Canullo, R.; Simonetti, E.; Bartha, S. Comspat: An R Package to Analyze within-Community Spatial Organization Using Species Combinations. Ecography 2022, 2022, e06216. [Google Scholar] [CrossRef]
- Anthelme, F.; Villaret, J.-C.; Brun, J.-J. Shrub Encroachment in the Alps Gives Rise to the Convergence of Sub-Alpine Communities on a Regional Scale. J. Veg. Sci. 2007, 18, 355–362. [Google Scholar] [CrossRef]
- Jurasinski, G.; Kreyling, J. Upward Shift of Alpine Plants Increases Floristic Similarity of Mountain Summits. J. Veg. Sci. 2007, 18, 711–718. [Google Scholar] [CrossRef]
- Zehnder, T.; Lüscher, A.; Ritzmann, C.; Pauler, C.M.; Berard, J.; Kreuzer, M.; Schneider, M.K. Dominant Shrub Species Are a Strong Predictor of Plant Species Diversity along Subalpine Pasture-Shrub Transects. Alp. Bot. 2020, 130, 141–156. [Google Scholar] [CrossRef]
- Maestre, F.T.; Eldridge, D.J.; Soliveres, S. A Multifaceted View on the Impacts of Shrub Encroachment. Appl. Veg. Sci. 2016, 19, 369–370. [Google Scholar] [CrossRef] [PubMed]
- Pakeman, R.J.; Fielding, D.A.; Everts, L.; Littlewood, N.A. Long-Term Impacts of Changed Grazing Regimes on the Vegetation of Heterogeneous Upland Grasslands. J. Appl. Ecol. 2019, 56, 1794–1805. [Google Scholar] [CrossRef]
- Ludvíková, V.; Pavlů, V.; Pavlů, L.; Gaisler, J.; Hejcman, M. Sward-Height Patches under Intensive and Extensive Grazing Density in an Agrostis Capillaris Grassland. Folia Geobot. 2015, 50, 219–228. [Google Scholar] [CrossRef]
- Olofsson, J. Short-and Long-Term Effects of Changes in Reindeer Grazing Pressure on Tundra Heath Vegetation. J. Ecol. 2006, 94, 431–440. [Google Scholar] [CrossRef]
- Hines, J.; Keil, P. Common Competitors and Rare Friends. Nat. Ecol. Evol. 2020, 4, 8–9. [Google Scholar] [CrossRef]
- LaPlante, E.; Souza, L. Plant Dominance in a Subalpine Montane Meadow: Biotic vs. Abiotic Controls of Subordinate Diversity within and across Sites. PeerJ 2018, 6, e5619. [Google Scholar] [CrossRef]
- Partzsch, M.; Faulhaber, M.; Meier, T. The Effect of the Dominant Grass Festuca Rupicola on the Establishment of Rare Forbs in Semi-Dry Grasslands. Folia Geobot. 2018, 53, 103–113. [Google Scholar] [CrossRef]
- Montané, F.; Casals, P.; Taull, M.; Lambert, B.; Dale, M.R.T. Spatial Patterns of Shrub Encroachment in Neighbouring Grassland Communities in the Pyrenees: Floristic Composition Heterogeneity Drives Shrub Proliferation Rates. Plant Ecol. 2010, 211, 267–278. [Google Scholar] [CrossRef]
- Kasari, L.; Gazol, A.; Kalwij, J.M.; Helm, A. Low Shrub Cover in Alvar Grasslands Increases Small-Scale Diversity by Promoting the Occurrence of Generalist Species. Tuexenia 2013, 33, 293–308. [Google Scholar]
- Sebastià, M.-T.; de Bello, F.; Puig, L.; Taull, M. Grazing as a Factor Structuring Grasslands in the Pyrenees. Appl. Veg. Sci. 2008, 11, 215–222. [Google Scholar] [CrossRef]
Alpha Diversity | Beta Diversity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species Richness | Shanno Index | Bray–Curtis Dissimilarity | |||||||||||||
N | Mean | Std Dev | t | p | N | Mean | Std Dev | t | p | N | Mean | Std Dev | t | p | |
Coarse-scale N | 6 | 15.5 | 4 | −4.7 | 0.005 | 6 | 1.7 | 0.4 | −3.9 | 0.01 | 30 | 33.9 | 10.2 | 2.1 | 0.04 |
Coarse-scale V | 6 | 30.2 | 4.7 | 6 | 2.3 | 0.2 | 30 | 29.4 | 5.4 | ||||||
Fine-scale N | 30 | 8.2 | 3.4 | n.a. | n.a. | 30 | 1.5 | 0.3 | −8.0 | <0.001 | 60 | 21.5 | 12.8 | −4.7 | <0.001 |
Fine-scale V | 30 | 14.9 | 4.5 | 30 | 2.0 | 0.2 | 60 | 31.0 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terziyska, T.; Tsakalos, J.; Bartha, S.; Apostolova, I.; Sopotlieva, D. Scale-Dependent Diversity Patterns in Subalpine Grasslands: Homogenization vs. Complexity. Land 2025, 14, 823. https://doi.org/10.3390/land14040823
Terziyska T, Tsakalos J, Bartha S, Apostolova I, Sopotlieva D. Scale-Dependent Diversity Patterns in Subalpine Grasslands: Homogenization vs. Complexity. Land. 2025; 14(4):823. https://doi.org/10.3390/land14040823
Chicago/Turabian StyleTerziyska, Tsvetelina, James Tsakalos, Sándor Bartha, Iva Apostolova, and Desislava Sopotlieva. 2025. "Scale-Dependent Diversity Patterns in Subalpine Grasslands: Homogenization vs. Complexity" Land 14, no. 4: 823. https://doi.org/10.3390/land14040823
APA StyleTerziyska, T., Tsakalos, J., Bartha, S., Apostolova, I., & Sopotlieva, D. (2025). Scale-Dependent Diversity Patterns in Subalpine Grasslands: Homogenization vs. Complexity. Land, 14(4), 823. https://doi.org/10.3390/land14040823