Ecosystem Service Values and Wheat Agroecosystem Management Types in a Semi-Arid Region, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Agronomy Conditions
2.2. Data Collection
2.3. Ecosystem Services and Environmental Impacts
- R factor (rainfall erosivity): This was estimated based on historical rainfall records from the local meteorological station (Arak).
- K factor (soil erodibility): Soil texture and organic matter content were obtained from local agricultural reports, and interviewed farmers provided soil analysis reports; any other soil survey records available were also used.
- L-S factor (slope length and slope steepness): These values were extracted from farm slopes.
- C factor (cover and management): This was determined based on land-use classification and crop residue data, which were collected through field observations and farmer consultations.
- P factor (conservation practices): The impact of existing conservation measures was estimated based on farmer-reported practices and secondary data sources including agricultural ministry reports.
2.4. Data Analysis
3. Results
3.1. Management of Wheat Agroecosystems
3.2. Wheat Agroecosystem Services
3.3. Soil Moisture Conservation
3.4. Biodiversity
3.5. Cultural Services
3.6. Net Value of Services in Wheat Agroecosystems
3.7. Relationship Between Grain and Forage Yield and Relative Service Value
4. Discussion
5. Conclusions and Recommendations
- Continuing to investigate the performance of different wheat species, with selection for robust, high-yielding, drought-resistant varieties having low (chemical) fertilizer requirements;
- Examining the potential for reducing monoculture through introducing an additional crop and/or grazing rotation;
- Analyzing tillage and cropping practices to maximize soil organic carbon;
- Assessing water management practices, including field studies of tree windbreaks and their long-term role in assisting moisture retention under specific environmental and social conditions;
- Investigating mechanisms for changed practices to reduce reliance on chemical fertilizers, including principles of integrated nutrient management;
- Exploring possibilities for enhancing ecosystem benefits from increases in the provisioning role of cultural services;
- Maintaining strong cooperation between researchers, farmers, and policymakers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spash, C.L. Ecosystems, contingent valuation and ethics: The case of wetland re-creation. Ecol. Econ. 2000, 34, 195–215. [Google Scholar] [CrossRef]
- Petcharat, A.; Lee, Y.; Chang, J.B. Choice experiments for estimating the non-market value of ecosystem services in the Bang Kachao Green Area, Thailand. Sustainability 2020, 12, 7637. [Google Scholar] [CrossRef]
- Dashtbozorgi, F.; Hedayatiaghmashhadi, A.; Dashtbozorgi, A.; Ruiz–Agudelo, C.A.; Fürst, C.; Cirella, G.T.; Naderi, M. Ecosystem services valuation using InVEST modeling: Case from southern Iranian mangrove forests. Reg. Stud. Mar. Sci. 2023, 60, 102813. [Google Scholar] [CrossRef]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group; Island Press: Washington, DC, USA, 2005; ISBN 1559632275. [Google Scholar]
- Jiang, L.; Wang, Z.; Zuo, Q.; Du, H. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness. J. Clean. Prod. 2023, 397, 136485. [Google Scholar] [CrossRef]
- Gebhardt, S.; van Dijk, J.; Wassen, M.J.; Bakker, M. Agricultural intensity interacts with landscape arrangement in driving ecosystem services. Agric. Ecosyst. Environ. 2023, 357, 108692. [Google Scholar] [CrossRef]
- Ali, M.A.; Kamraju, M. Natural Resources and Society: Understanding the Complex Relationship Between Humans and the Environment; Springer Nature: Berlin/Heidelberg, Germany, 2023; ISBN 3031467205. [Google Scholar]
- Norris, K.; Potts, S.G.; Mortimer, S.R. Ecosystem services and food production. Issues Environ. Sci. Technol. 2010, 30, 52–69. [Google Scholar]
- Comberti, C.; Thornton, T.F.; De Echeverria, V.W.; Patterson, T. Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Glob. Environ. Chang. 2015, 34, 247–262. [Google Scholar] [CrossRef]
- Baude, M.; Meyer, B.C.; Schindewolf, M. Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Sci. Total Environ. 2019, 659, 1526–1536. [Google Scholar] [CrossRef]
- Marzban, Z.; Asgharipour, M.R.; Ghanbari, A.; Ramroudi, M.; Seyedabadi, E. Determining cropping patterns with emphasis on optimal energy consumption using LCA and multi-objective planning: A case study in eastern Lorestan Province, Iran. Energy Ecol. Environ. 2021, 7, 489–507. [Google Scholar] [CrossRef]
- DeClerck, F.A.J.; Jones, S.K.; Attwood, S.; Bossio, D.; Girvetz, E.; Chaplin-Kramer, B.; Enfors, E.; Fremier, A.K.; Gordon, L.J.; Kizito, F. Agricultural ecosystems and their services: The vanguard of sustainability? Curr. Opin. Environ. Sustain. 2016, 23, 92–99. [Google Scholar] [CrossRef]
- Sharafi, S.; Kazemi, A.; Amiri, Z. Estimating energy consumption and GHG emissions in crop production: A machine learning approach. J. Clean. Prod. 2023, 408, 137242. [Google Scholar] [CrossRef]
- Ahammad, R.; Tomscha, S.A.; Gergel, S.E.; Baudron, F.; Duriaux-Chavarría, J.-Y.; Foli, S.; Gumbo, D.; Rowland, D.; van Vianen, J.; Sunderland, T.C.H. Do provisioning ecosystem services change along gradients of increasing agricultural production? Landsc. Ecol. 2024, 39, 5. [Google Scholar] [CrossRef]
- Sanou, J.; Tengberg, A.; Bazié, H.R.; Mingasson, D.; Ostwald, M. Assessing trade-offs between agricultural productivity and ecosystem functions: A review of science-based tools? Land 2023, 12, 1329. [Google Scholar] [CrossRef]
- Segre, H.; Segoli, M.; Carmel, Y.; Shwartz, A. Experimental evidence of multiple ecosystem services and disservices provided by ecological intensification in Mediterranean agro-ecosystems. J. Appl. Ecol. 2020, 57, 2041–2053. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.; Liu, G.; Yang, Q.; Wang, X.; Casazza, M.; Agostinho, F.; Lombardi, G.V.; Giannetti, B.F. Emergy-based valuation of agriculture ecosystem services and dis-services. J. Clean. Prod. 2019, 239, 118019. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Bachev, H. Agro-ecosystem services management of Bulgarian farms. Bulg. J. Agric. Sci. 2021, 27, 1023–1038. [Google Scholar]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Longo, M.; Dal Ferro, N.; Lazzaro, B.; Morari, F. Trade-offs among ecosystem services advance the case for improved spatial targeting of agri-environmental measures. J. Environ. Manag. 2021, 285, 112131. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Pathak, H.; Chakrabarti, B.; Mina, U.; Pramanik, P.; Sharma, D.K. Ecosystem services of wheat (Triticum aestivum) production with conventional and conservation agricultural practices in the Indo-Gangetic Plains. Indian J. Agric. Sci. 2017, 87, 987–991. [Google Scholar] [CrossRef]
- Panwar, A.S.; Ansari, M.A.; Ravisankar, N.; Babu, S.; Prusty, A.K.; Ghasal, P.C.; Choudhary, J.; Shamim, M.; Singh, R.; Raghavendra, K.J. Effect of organic farming on the restoration of soil quality, ecosystem services, and productivity in rice–wheat agro-ecosystems. Front. Environ. Sci. 2022, 10, 972394. [Google Scholar] [CrossRef]
- Rasul, G. Ecosystem services and agricultural land-use practices: A case study of the Chittagong Hill Tracts of Bangladesh. Sustain. Sci. Pract. Policy 2009, 5, 15–27. [Google Scholar] [CrossRef]
- Naime, J.; Mora, F.; Sánchez-Martínez, M.; Arreola, F.; Balvanera, P. Economic valuation of ecosystem services from secondary tropical forests: Trade-offs and implications for policy making. For. Ecol. Manag. 2020, 473, 118294. [Google Scholar] [CrossRef]
- Abolmaali, S.M.; Tarkesh, M.; Mousavi, S.A.; Karimzadeh, H.; Pourmanafi, S.; Fakheran, S. Identifying priority areas for conservation: Using ecosystem services hotspot mapping for land-use/land-cover planning in central of Iran. Environ. Manag. 2024, 73, 1016–1031. [Google Scholar] [CrossRef]
- Sharafi, S.; Mohammadi Ghaleni, M. Revealing accuracy in climate dynamics: Enhancing evapotranspiration estimation using advanced quantile regression and machine learning models. Appl. Water Sci. 2024, 14, 162. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Thornes, J. Atmospheric services. Ecosyst. Serv. 2010, 30, 70–103. [Google Scholar]
- Thornes, J.; Bloss, W.; Bouzarovski, S.; Cai, X.; Chapman, L.; Clark, J.; Dessai, S.; Du, S.; van der Horst, D.; Kendall, M. Communicating the value of atmospheric services. Meteorol. Appl. 2010, 17, 243–250. [Google Scholar] [CrossRef]
- Kumar, P. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Routledge: Abingdon-on-Thames, UK, 2012; ISBN 1849775486. [Google Scholar]
- Sharafi, S.; Nahvinia, M.J. Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions. Agric. Water Manag. 2024, 299, 108857. [Google Scholar] [CrossRef]
- Kremen, C. Managing ecosystem services: What do we need to know about their ecology? Ecol. Lett. 2005, 8, 468–479. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Lv, Y.; Gu, S.; Guo, D. Valuing environmental externalities from rice–wheat farming in the lower reaches of the Yangtze River. Ecol. Econ. 2010, 69, 1436–1442. [Google Scholar] [CrossRef]
- IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage; Metz, B., Davidson, O., de Coninck, H.C., Loos, M., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; ISBN 9780521866439. [Google Scholar]
- Vaezi, A.R.; Sadeghi, S.H.R.; Bahrami, H.A.; Mahdian, M.H. Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology 2008, 97, 414–423. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.-A.; Naderi, M.; Dematte, J.A.M.; Kerry, R. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran. Geomorphology 2016, 273, 385–395. [Google Scholar] [CrossRef]
- Mahallati, M.N.; Koocheki, A. Trend analysis of nitrogen use and productivity in wheat (Triticum aestivum L.) production systems of Iran. Agroecology 2017, 8, 612–627. [Google Scholar]
- Liu, H.; Li, X.; Chen, F.; Härdle, W.; Liang, H. A comprehensive comparison of goodness-of-fit tests for logistic regression models. Stat. Comput. 2024, 34, 175. [Google Scholar] [CrossRef]
- Bernardes, R.C.; Botina, L.L.; Ribas, A.; Soares, J.M.; Martins, G.F. Artificial intelligence-driven tool for spectral analysis: Identifying pesticide contamination in bees from reflectance profiling. J. Hazard. Mater. 2024, 480, 136425. [Google Scholar] [CrossRef]
- El Afandi, G.; Ismael, H.; Fall, S. Application of OpenAir and AgDRIFT models to estimate organophosphate pesticide spray drift: A case study in Macon County, Alabama. Agriculture 2023, 13, 1763. [Google Scholar] [CrossRef]
- Murty, D.; Kirschbaum, M.U.F.; Mcmurtrie, R.E.; Mcgilvray, H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Change Biol. 2002, 8, 105–123. [Google Scholar] [CrossRef]
- Randall, A. Valuing the outputs of multifunctional agriculture. Eur. Rev. Agric. Econ. 2002, 29, 289–307. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Koocheki, A.; Nassiri Mahallati, M.; Amin Ghafoori, A.; Mahlooji, M.; Fallahpour, F. Economic value of agroecosystem services within wheat fields in Khorasan Razavi province. J. Agroecol. 2016, 8, 612–627. [Google Scholar]
- Grandy, A.S.; Loecke, T.D.; Parr, S.; Robertson, G.P. Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems. J. Environ. Qual. 2006, 35, 1487–1495. [Google Scholar] [CrossRef]
- Jin, G.; Chen, K.; Wang, P.; Guo, B.; Dong, Y.; Yang, J. Trade-offs in land-use competition and sustainable land development in the North China Plain. Technol. Forecast. Soc. Change 2019, 141, 36–46. [Google Scholar] [CrossRef]
- Bapiri, D.; Khodaverdiloo, H.; Barin, M.; Ghoosta, Y. The Impact of Cultivation on Some Soil Biological Properties: A Case Study in West Azarbaijan Province, Iran. Appl. Soil Res. 2020, 8, 96–108. [Google Scholar]
- Tang, F.H.M.; Crews, T.E.; Brunsell, N.A.; Vico, G. Perennial intermediate wheatgrass accumulates more soil organic carbon than annual winter wheat–a model assessment. Plant Soil 2024, 494, 509–528. [Google Scholar] [CrossRef]
- Pretty, J.N.; Brett, C.; Gee, D.; Hine, R.E.; Mason, C.F.; Morison, J.I.L.; Raven, H.; Rayment, M.D.; van der Bijl, G. An assessment of the total external costs of UK agriculture. Agric. Syst. 2000, 65, 113–136. [Google Scholar] [CrossRef]
- Melchior, I.C.; Newig, J. Governing transitions towards sustainable agriculture—Taking stock of an emerging field of research. Sustainability 2021, 13, 528. [Google Scholar] [CrossRef]
- Sikka, A.K.; Alam, M.F.; Mandave, V. Agricultural water management practices to improve the climate resilience of irrigated agriculture in India. Irrig. Drain. 2022, 71, 7–26. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Wratten, S.D.; Cullen, R.; Case, B. The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol. Econ. 2008, 64, 835–848. [Google Scholar] [CrossRef]
- Mackay-Smith, T.H.; Burkitt, L.; Reid, J.; López, I.F.; Phillips, C. A framework for reviewing silvopastoralism: A New Zealand hill country case study. Land 2021, 10, 1386. [Google Scholar] [CrossRef]
- Weninger, T.; Scheper, S.; Lackóová, L.; Kitzler, B.; Gartner, K.; King, N.W.; Cornelis, W.; Strauss, P.; Michel, K. Ecosystem services of tree windbreaks in rural landscapes—A systematic review. Environ. Res. Lett. 2021, 16, 103002. [Google Scholar] [CrossRef]
- Smith, M.M.; Bentrup, G.; Kellerman, T.; MacFarland, K.; Straight, R.; Ameyaw, L. Windbreaks in the United States: A systematic review of producer-reported benefits, challenges, management activities and drivers of adoption. Agric. Syst. 2021, 187, 103032. [Google Scholar] [CrossRef]
- Bagheri, A.; Teymouri, A. Farmers’ intended and actual adoption of soil and water conservation practices. Agric. Water Manag. 2022, 259, 107244. [Google Scholar] [CrossRef]
- Fitter, A.; Elmqvist, T.; Haines-Young, R.; Potschin, M.; Rinaldo, A.; Setala, H.; Stoll-Kleemann, S.; Zobel, M.; Murlis, J. An assessment of ecosystem services and biodiversity in Europe. Issues Environ. Sci. Technol. 2010, 30, 1–28. [Google Scholar]
- Carpenter, S.R.; DeFries, R.; Dietz, T.; Mooney, H.A.; Polasky, S.; Reid, W.V.; Scholes, R.J. Millennium ecosystem assessment: Research needs. Science 2006, 314, 257–258. [Google Scholar] [CrossRef]
- Emmerson, M.; Morales, M.B.; Oñate, J.J.; Batary, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S. How agricultural intensification affects biodiversity and ecosystem services. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 55, pp. 43–97. [Google Scholar]
- Berbeć, A.K.; Staniak, M.; Feledyn-Szewczyk, B.; Kocira, A.; Stalenga, J. Organic but also low-input conventional farming systems support high biodiversity of weed species in winter cereals. Agriculture 2020, 10, 413. [Google Scholar] [CrossRef]
- Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 2020, 4, 229–240. [Google Scholar]
- Mueller, L.; Eulenstein, F.; Dronin, N.M.; Mirschel, W.; McKenzie, B.M.; Antrop, M.; Jones, M.; Dannowski, R.; Schindler, U.; Behrendt, A. Agricultural landscapes: History, status and challenges. In Exploring and Optimizing Agricultural Landscapes; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–54. [Google Scholar]
- Sharma, I.; Birman, S. Biodiversity Loss, Ecosystem Services, and Their Role in Promoting Sustainable Health. In The Climate-Health-Sustainability Nexus: Understanding the Interconnected Impact on Populations and the Environment; Springer: Berlin/Heidelberg, Germany, 2024; pp. 163–188. [Google Scholar]
- Rani, K.; Rani, A.; Sharma, P.; Dahiya, A.; Punia, H.; Kumar, S.; Sheoran, S.; Banerjee, A. Legumes for agroecosystem services and sustainability. In Advances in Legumes for Sustainable Intensification; Elsevier: Amsterdam, The Netherlands, 2022; pp. 363–380. [Google Scholar]
- Yang, Y.; Tilman, D.; Jin, Z.; Smith, P.; Barrett, C.B.; Zhu, Y.-G.; Burney, J.; D’Odorico, P.; Fantke, P.; Fargione, J. Climate change exacerbates the environmental impacts of agriculture. Science 2024, 385, eadn3747. [Google Scholar] [CrossRef]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Lal, R.; Griffin, M.; Apt, J.; Lave, L.; Morgan, M.G. Managing soil carbon. Science 2004, 304, 393. [Google Scholar] [CrossRef] [PubMed]
- Crossman, N.D.; Bryan, B.A.; Summers, D.M. Carbon payments and low-cost conservation. Conserv. Biol. 2011, 25, 835–845. [Google Scholar] [CrossRef]
- Nemecek, T.; Dubois, D.; Huguenin-Elie, O.; Gaillard, G. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agric. Syst. 2011, 104, 217–232. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Mousavi-Avval, S.H.; Nonhebel, S. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renew. Sustain. Energy Rev. 2014, 30, 724–733. [Google Scholar] [CrossRef]
- Yousefi, M.; Mahdavi Damghani, A.; Khoramivafa, M. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran. Environ. Sci. Pollut. Res. 2016, 23, 7390–7397. [Google Scholar] [CrossRef]
- Kirchmann, H.; Thorvaldsson, G. Challenging targets for future agriculture. Eur. J. Agron. 2000, 12, 145–161. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar]
- Goossens, Y.; Annaert, B.; De Tavernier, J.; Mathijs, E.; Keulemans, W.; Geeraerd, A. Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms. Agric. Syst. 2017, 153, 81–93. [Google Scholar] [CrossRef]
- Bennett, E.M.; Baird, J.; Baulch, H.; Chaplin-Kramer, R.; Fraser, E.; Loring, P.; Morrison, P.; Parrott, L.; Sherren, K.; Winkler, K.J. Ecosystem services and the resilience of agricultural landscapes. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2021; Volume 64, pp. 1–43. ISBN 978-0-12-822979-8. [Google Scholar]
- El Chami, D.; Daccache, A.; El Moujabber, M. How can sustainable agriculture increase climate resilience? A systematic review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef]
- de Moraes Sá, J.C.; Lal, R.; Cerri, C.C.; Lorenz, K.; Hungria, M.; de Faccio Carvalho, P.C. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ. Int. 2017, 98, 102–112. [Google Scholar]
- Lin, J.; Huang, L.; Zheng, Y.; Chen, C.; Wang, L.; Wang, K.; Qiu, J. Integrating ecosystem services, stakeholders’ perspective, and land-use scenarios to safeguard sustainability of the Mulberry-Dyke and Fish-Pond System. Landsc. Ecol. 2024, 39, 127. [Google Scholar] [CrossRef]
- Datta, P.; Behera, B. Assessing the role of agriculture-forestry-livestock nexus in improving farmers’ food security in South Asia: A systematic literature review. Agric. Syst. 2024, 213, 103807. [Google Scholar] [CrossRef]
- Javaid, Q. Sustainable Solutions for a Warming Planet Climate Smart Agriculture as a Tool for Global Food Security. MZ Comput. J. 2024, 5, 1–7. Available online: https://mzresearch.com/index.php/MZCJ/article/view/238 (accessed on 11 April 2025).
- Nkansah-Dwamena, E. Why small-scale circular agriculture is central to food security and environmental sustainability in sub-saharan Africa? The case of Ghana. Circ. Econ. Sustain. 2024, 4, 995–1019. [Google Scholar] [CrossRef]
- Chabert, A.; Sarthou, J.-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric. Ecosyst. Environ. 2020, 292, 106815. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of crop diversity on agroecosystem function: Crop yield response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Patel, N.; Rani, L.; Kumar, P.; Dutt, I.; Maddodi, B.S.; Chaudhary, V.K. Sustainable options for fertilizer management in agriculture to prevent water contamination: A review. Environ. Dev. Sustain. 2024, 26, 8303–8327. [Google Scholar] [CrossRef]
- Dubs, F.; Enjalbert, J.; Barot, S.; Porcher, E.; Allard, V.; Pope, C.; Gauffreteau, A.; Niboyet, A.; Pommier, T.; Saint-Jean, S. Unfolding the link between multiple ecosystem services and bundles of functional traits to design multifunctional crop variety mixtures. Agron. Sustain. Dev. 2023, 43, 71. [Google Scholar] [CrossRef]
- Rinaldi, M.; Almeida, A.S.; Álvaro Fuentes, J.; Annabi, M.; Annicchiarico, P.; Castellini, M.; Cantero Martinez, C.; Cruz, M.G.; D’Alessandro, G.; Gitsopoulos, T. Open questions and research needs in the adoption of conservation agriculture in the mediterranean area. Agronomy 2022, 12, 1112. [Google Scholar] [CrossRef]
- Lawal, T.O.; Mustapha Abdulsalam, A.M.; Sundararajan, S. Economic and Environmental Implications of Sustainable Agricultural Practices in Arid Regions: A Cross-disciplinary Analysis of Plant Science, Management, and Economics. Int. J. 2023, 10, 3100–3114. [Google Scholar] [CrossRef]
- Ekins, P.; Zenghelis, D. The costs and benefits of environmental sustainability. Sustain. Sci. 2021, 16, 949–965. [Google Scholar] [CrossRef]
- Hasan, M.M.; Tarannum, M.N. Adverse impacts of microplastics on soil physicochemical properties and crop health in agricultural systems. J. Hazard. Mater. Adv. 2024, 17, 100528. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- MacLaren, C.; Mead, A.; van Balen, D.; Claessens, L.; Etana, A.; de Haan, J.; Haagsma, W.; Jäck, O.; Keller, T.; Labuschagne, J. Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nat. Sustain. 2022, 5, 770–779. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C. Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef] [PubMed]
Agroecosystem Services | Min (USD) | Max (USD) | CV (%) | Portion of Total Value (%) | Portion of Net Value (%) |
---|---|---|---|---|---|
Intensive Agroecosystem | |||||
Food and feed | 1.83 × 103 | 12.11 × 103 | 13.3 | 16.56 | 18.97 |
Oxygen production | 10.36 × 103 | 48.58 × 103 | 19.6 | 70.69 | 81.02 |
Moisture preservation | 0.2 × 103 | 1.73 × 103 | 12.4 | 2.12 | 2.42 |
Carbon sequestration | 1.21 × 103 | 5.36 × 103 | 9.8 | 6.90 | 7.91 |
Biodiversity | 0.76 × 103 | 2.87 × 103 | 7.4 | 2.65 | 3.03 |
Cultural | 0.1 × 103 | 0.69 × 103 | 3.3 | 1.08 | 1.23 |
Total Positive Value (I) | 14.46 × 103 | 71.34 × 103 | 10.96 | - | - |
Emission of greenhouse gases | −1.89 × 103 | −1.89 × 103 | 6.4 | 24.93 | −3.64 |
Soil erosion | −2.21 × 103 | −3.65 × 103 | 12.1 | 40.48 | −5.91 |
Nitrogen and phosphor leaching | −1.25 × 103 | −3.14 × 103 | 5.8 | 34.58 | −5.05 |
Total Negative Value (II) | −5.35 × 103 | −8.68 × 103 | 8.1 | - | - |
Net services value | 9.11 × 103 | 62.66 × 103 | - | - | - |
Traditional Agroecosystem | |||||
Food and feed | 3.2 × 103 | 10.54 × 103 | 11.3 | 17.35 | 18.47 |
Oxygen production | 12.54 × 103 | 42.01 × 103 | 13.4 | 67.21 | 71.54 |
Moisture preservation | 0.1 × 103 | 1.5 × 103 | 9.5 | 1.84 | 1.96 |
Carbon sequestration | 2.13 × 103 | 6.57 × 103 | 11.1 | 9.24 | 9.84 |
Biodiversity | 0.89 × 103 | 2.25 × 103 | 6.2 | 3.9 | 4.15 |
Cultural | 0.09 × 103 | 0.55 × 103 | 3.64 | 0.43 | 0.46 |
Total Positive Value (I) | 18.95 × 103 | 63.42 × 103 | 9.19 | - | - |
Emission of greenhouse gases | −1.44 × 103 | −1.44 × 103 | 0 | 45.28 | −2.91 |
Soil erosion | −1.35 × 103 | −1.63 × 103 | 12.3 | 38.36 | −2.47 |
Nitrogen and phosphor leaching | −0.27 × 103 | −1.09 × 103 | 18.2 | 16.35 | −1.05 |
Total Negative Value (II) | −3.06 × 103 | −4.16 × 103 | 10.1 | - | - |
Net services value | 15.89 × 103 | 59.26 × 103 | - | - | |
Industrial Agroecosystem | |||||
Food and feed | 4.23 × 103 | 11.21 × 103 | 15.3 | 29.98 | 35.02 |
Oxygen production | 16.41 × 103 | 17.02 × 103 | 14.4 | 44.8 | 52.35 |
Moisture preservation | 2.36 × 103 | 5.14 × 103 | 8.7 | 12.24 | 14.3 |
Carbon sequestration | 3.61 × 103 | 5.5 × 103 | 10 | 12.56 | 14.67 |
Biodiversity | 0.12 × 103 | 0.15 × 103 | 5.9 | 0.41 | 0.48 |
Cultural | 0 | 0 | 3.4 | 0 | 0 |
Total Positive Value (I) | 26.73 × 103 | 39.02 × 103 | 14.5 | - | - |
Emission of greenhouse gases | −1.96 × 103 | −1.85 × 103 | 8.2 | 38.87 | −6.54 |
Soil erosion | −1.02 × 103 | −1.23 × 103 | 9.5 | 23.46 | −3.95 |
Nitrogen and phosphor leaching | −1.26 × 103 | −2.12 × 103 | 12.8 | 37.75 | −6.35 |
Total Negative Value (II) | −4.24 × 103 | −5.2 × 103 | 10.1 | - | - |
Net services value | 22.49 × 103 | 33.82 × 103 | - | - | - |
Conservation Agroecosystem | |||||
Food and feed | 3.46 × 103 | 9.64 × 103 | 16.5 | 13.64 | 14.32 |
Oxygen production | 12.64 × 103 | 46.91 × 103 | 13.8 | 63.45 | 66.65 |
Moisture preservation | 3.19 × 103 | 4.78 × 103 | 9.3 | 6.58 | 6.91 |
Carbon sequestration | 6.59 × 103 | 7.12 × 103 | 11.8 | 11.37 | 11.94 |
Biodiversity | 1.15 × 103 | 2.36 × 103 | 12.2 | 3.63 | 3.81 |
Cultural | 0.25 × 103 | 0.86 × 103 | 15.3 | 1.31 | 1.38 |
Total Positive Value (I) | 27.28 × 103 | 71.67 × 103 | 13.1 | - | - |
Emission of greenhouse gases | −1.99 × 103 | −2.12 × 103 | 6.6 | 67.56 | −3.4 |
Soil erosion | −0.34 × 103 | −0.56 × 103 | 9.7 | 13.85 | −0.69 |
Nitrogen and phosphor leaching | −0.51 × 103 | −0.63 × 103 | 11.9 | 18.58 | −0.93 |
Total Negative Value (II) | −2.84 × 103 | −3.31 × 103 | 9.4 | - | - |
Net services value | 24.44 × 103 | 68.36 × 103 | - | - | - |
Organic Agroecosystem | |||||
Food and feed | 5.61 × 103 | 15.29 × 103 | 23.2 | 35.12 | 36.76 |
Oxygen production | 12.44 × 103 | 16.25 × 103 | 16.9 | 36.76 | 38.48 |
Moisture preservation | 2.33 × 103 | 3.75 × 103 | 5.1 | 7.42 | 7.76 |
Carbon sequestration | 5.21 × 103 | 6.12 × 103 | 9.3 | 14.01 | 14.67 |
Biodiversity | 1.32 × 103 | 2.53 × 103 | 19.6 | 5.04 | 5.28 |
Cultural | 0.33 × 103 | 0.87 × 103 | 13.2 | 1.62 | 1.69 |
Total Positive Value (I) | 27.24 × 103 | 44.81 × 103 | 14.55 | - | - |
Emission of greenhouse gases | −0.66 × 103 | −0.68 × 103 | 17.3 | 34.73 | −1.62 |
Soil erosion | −0.98 × 103 | −1.26 × 103 | 9.6 | 56.84 | −2.65 |
Nitrogen and phosphor leaching | −0.1 × 103 | −0.2 × 103 | 10.1 | 8.42 | −0.39 |
Total Negative Value (II) | −1.74 × 103 | −2.14 × 103 | 12.3 | - | - |
Net services value | 25.5 × 103 | 42.67 × 103 | - | - | |
Landscape | |||||
Food and feed | 1.51 × 103 | 2.14 × 103 | 12.3 | 2.23 | 2.25 |
Oxygen production | 13.22 × 103 | 66.79 × 103 | 17.6 | 61.05 | 61.52 |
Moisture preservation | 3.14 × 103 | 3.68 × 103 | 14.4 | 3.91 | 3.94 |
Carbon sequestration | 7.14 × 103 | 9.25 × 103 | 21.3 | 10.11 | 10.18 |
Biodiversity | 3.69 × 103 | 18.21 × 103 | 25.9 | 17.88 | 18.02 |
Cultural | 2.34 × 103 | 6.23 × 103 | 13.3 | 4.79 | 4.83 |
Total Positive Value (I) | 31.04 × 103 | 106.3 × 103 | 17.46 | - | - |
Emission of greenhouse gases | −0.55 × 103 | −0.55 × 103 | 9.3 | 82.08 | −0.62 |
Soil erosion | −0.25 × 103 | −0.41 × 103 | 6.8 | 49.25 | −0.37 |
Nitrogen and phosphor leaching | −0.11 × 103 | −0.3 × 103 | 12.5 | −31.34 | 0.23 |
Total Negative Value (II) | −0.91 × 103 | −1.26 × 103 | 9.5 | - | - |
Net services value | 30.13 × 103 | 105.04 × 103 | - | - | - |
Agroecosystem | Equation Type | Suitable Equation | R | MSE | MS | p Value |
---|---|---|---|---|---|---|
Intensive | Gaussian | 0.563 | 1.93 | 544.6 | 0.69 | |
Traditional | Gaussian | 0.56 | 1.45 | 1467.6 | 0.001 | |
Industrial | Gaussian | 0.965 | 0.407 | 514.49 | 0.979 | |
Conservation | Plane | 0.95 | 0.311 | 1313.8 | 0.046 | |
Organic | Gaussian | 0.933 | 0.202 | 588.73 | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharafi, S.; Marzban, Z.; Dragovich, D. Ecosystem Service Values and Wheat Agroecosystem Management Types in a Semi-Arid Region, Iran. Land 2025, 14, 865. https://doi.org/10.3390/land14040865
Sharafi S, Marzban Z, Dragovich D. Ecosystem Service Values and Wheat Agroecosystem Management Types in a Semi-Arid Region, Iran. Land. 2025; 14(4):865. https://doi.org/10.3390/land14040865
Chicago/Turabian StyleSharafi, Saeed, Zahra Marzban, and Deirdre Dragovich. 2025. "Ecosystem Service Values and Wheat Agroecosystem Management Types in a Semi-Arid Region, Iran" Land 14, no. 4: 865. https://doi.org/10.3390/land14040865
APA StyleSharafi, S., Marzban, Z., & Dragovich, D. (2025). Ecosystem Service Values and Wheat Agroecosystem Management Types in a Semi-Arid Region, Iran. Land, 14(4), 865. https://doi.org/10.3390/land14040865