An Ecological Risk Assessment of the Dianchi Basin Based on Multi-Scenario Land Use Change Under the Constraint of an Ecological Defense Zone
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Simulation and Evaluation Methods
3.2.1. Evaluation of EFI and ESE
3.2.2. PLUS Model
3.2.3. Ecological Risk Evaluation
4. Results
4.1. Extraction of Restricted Conversion Areas in Dianchi Basin
4.1.1. Spatial Patterns of EFI and ESE
4.1.2. Identification of Ecological Defense Zone
4.2. Land Use Change Under the Constraint of the Ecological Defense Zone in the Dianchi Basin
4.2.1. Multi-Scenario Simulation of Land Use for 2030
4.2.2. Land Use Changes Between 2020 and 2030
4.3. Analysis of Ecological Risk Changes Under the Ecological Defense Zone in the Dianchi Basin
4.3.1. Ecological Risk Evaluation Under Multiple Scenarios for 2030
4.3.2. Ecological Risk Changes Between 2020 and 2030
5. Discussion
5.1. Significance of Ecological Defense Zone for Future Land Layout Optimization
5.2. Implications of Ecological Risk Assessment for Future Sustainable Management of Ecological Ecosystems
5.3. Management Strategies for Ecological Vulnerability and Ecological Risks in Urban-Type Lake Basin Environments
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NS | Natural scenario |
ES | Economic scenario |
PS | Ecological scenario |
EFI | Ecological function importance |
ESE | Ecological sensitivity |
GDERI | Guidelines for the Delineation of Ecological Red Lines |
References
- Wu, J.; Han, P.; Zhai, J.; Zhang, Q. Innovative Perspectives on Ecological Assessment in the Agro-Pastoral Ecotone of Inner Mongolia: An Integrated Evaluation and Forecast of Landscape and Ecological Risks and Drivers. Land 2024, 13, 1849. [Google Scholar] [CrossRef]
- Solomon, K.R.; Baker, D.B.; Richards, R.P.; Dixon, K.R.; Klaine, S.J.; La Point, T.W.; Kendall, R.J.; Weisskopf, C.P.; Giddings, J.M.; Giesy, J.P.; et al. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 1996, 15, 31–76. [Google Scholar] [CrossRef]
- Abdullah, S.; Adnan, M.S.G.; Barua, D.; Murshed, M.M.; Kabir, Z.; Chowdhury, M.B.H.; Hassan, Q.K.; Dewan, A. Urban green and blue space changes: A spatiotemporal evaluation of impacts on ecosystem service value in Bangladesh. Ecol. Inform. 2022, 70, 101730. [Google Scholar] [CrossRef]
- Cervelli, E.; Pindozzi, S.; Sacchi, M.; Capolupo, A.; Cialdea, D.; Rigillo, M.; Boccia, L. Supporting land use change assessment through Ecosystem Services and Wildlife Indexes. Land Use Policy 2017, 65, 249–265. [Google Scholar] [CrossRef]
- Guo, J.; Shen, B.; Li, H.; Wang, Y.; Tuvshintogtokh, I.; Niu, J.; Potter, M.A.; Li, F.Y. Past dynamics and future prediction of the impacts of land use cover change and climate change on landscape ecological risk across the Mongolian plateau. J. Environ. Manag. 2024, 355, 120365. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.M.; Kim, H.-J.; Sadiq, S.; Alam, M.; Siddiqua, T.; Mamun, M.A.; Gazi, M.A.H.; Raju, M.R.; Chen, N.; et al. Assessing the Influence of Land Cover and Climate Change Impacts on Runoff Patterns Using CA-ANN Model and CMIP6 Data. ISPRS Int. J. Geo-Inf. 2023, 12, 401. [Google Scholar] [CrossRef]
- Fulford, R.S.; Russell, M.; Myers, M.; Malish, M.; Delmaine, A. Models help set ecosystem service baselines for restoration assessment. J. Environ. Manag. 2022, 317, 115411. [Google Scholar] [CrossRef]
- Jing, Z.; Weihua, F.; Peijun, S.; Li, Z. Modeling the impacts of land use change on hydrological processes in fast urbanizing region—A case study of the Buji watershed in Shenzhen City, China. J. Nat. Resour. 2009, 24, 1560–1572. [Google Scholar]
- Karimian, H.; Zou, W.; Chen, Y.; Xia, J.; Wang, Z. Landscape ecological risk assessment and driving factor analysis in Dongjiang river watershed. Chemosphere 2022, 307, 135835. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Neyret, M.; Peter, S.; Le Provost, G.; Boch, S.; Boesing, A.L.; Bullock, J.M.; Hölzel, N.; Klaus, V.H.; Kleinebecker, T.; Krauss, J.; et al. Landscape management strategies for multifunctionality and social equity. Nat. Sustain. 2023, 6, 391–403. [Google Scholar] [CrossRef]
- Cao, M.; Tian, Y.; Wu, K.; Chen, M.; Chen, Y.; Hu, X.; Sun, Z.; Zuo, L.; Lin, J.; Luo, L.; et al. Future land-use change and its impact on terrestrial ecosystem carbon pool evolution along the Silk Road under SDG scenarios. Sci. Bull. 2023, 68, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; Yan, Z.; Li, K.; Wang, C.; Shi, Y.; Du, Y. Prediction of ecological security network in Northeast China based on landscape ecological risk. Ecol. Indic. 2024, 160, 111783. [Google Scholar] [CrossRef]
- Li, C.; Qin, F.; Liu, Z.; Pan, Z.; Gao, D.; Han, Z. Multi-scenario assessment of landscape ecological risk in the transitional zone between the warm temperate zone and the northern subtropical zone. Front. Ecol. Evol. 2024, 12, 1471164. [Google Scholar] [CrossRef]
- You, C.; Qu, H.; Zhang, S.; Guo, L. Assessment of Uncertainties in Ecological Risk Based on the Prediction of Land Use Change and Ecosystem Service Evolution. Land 2024, 13, 535. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y. Ventilation potential simulation based on multiple scenarios of land-use changes catering for urban planning goals in the metropolitan area. J. Clean. Prod. 2024, 483, 144301. [Google Scholar] [CrossRef]
- Xu, D.; Yu, C.; Lin, W.; Yao, J.; Zhou, W. Spatiotemporal Evolution and Prediction of Land Use and Carbon Stock in Shanghai. Land 2024, 13, 267. [Google Scholar] [CrossRef]
- Xin, X.; Zhou, J.; Johnson, V.C.; Shi, J.; Tan, M.L.; Zhang, F. Multi-scenario land use change simulation and spatial-temporal evolution of carbon storage in the Yangtze River Delta region based on the PLUS-InVEST model. PLoS ONE 2025, 20, e0316255. [Google Scholar] [CrossRef]
- Nie, W.; Xu, B.; Yang, F.; Shi, Y.; Liu, B.; Wu, R.; Lin, W.; Pei, H.; Bao, Z. Simulating future land use by coupling ecological security patterns and multiple scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Song, Y.; Han, H. Bringing conservation priorities into urban growth simulation: An integrated model and applied case study of Hangzhou, China. Resour. Conserv. Recycl. 2019, 140, 324–337. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Kang, L.; Yang, X.; Gao, X.; Zhang, J.; Zhou, J.; Hu, Y.; Chi, H. Landscape ecological risk evaluation and prediction under a wetland conservation scenario in the Sanjiang Plain based on land use/cover change. Ecol. Indic. 2024, 162, 112053. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Cheng, L.; Wang, J.; Wen, M. Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Yu, M.; Li, Y. Multi-Scenario Prediction of Land-Use Changes and Ecosystem Service Values in the Lhasa River Basin Based on the FLUS-Markov Model. Land 2024, 13, 597. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Z.; Wang, Z.; Liu, Y. Development vs. conservation in limited urban sprawl: An integrated framework for resolving the urban boundary dilemma in China. J. Geogr. Sci. 2024, 34, 1371–1393. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Sun, J.; Su, S.; Shen, Z. An Improved Future Land-Use Simulation Model with Dynamically Nested Ecological Spatial Constraints. Remote Sens. 2023, 15, 2921. [Google Scholar] [CrossRef]
- Tong, X.; Feng, Y. A review of assessment methods for cellular automata models of land-use change and urban growth. Int. J. Geogr. Inf. Sci. 2019, 34, 866–898. [Google Scholar] [CrossRef]
- Clarke, K.C.; Gaydos, L.J. Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geogr. Inf. Sci. 1998, 12, 699–714. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Yao, Y.; Jiang, Y.; Sun, Z.; Li, L.; Chen, D.; Xiong, K.; Dong, A.; Cheng, T.; Zhang, H.; Liang, X.; et al. Applicability and sensitivity analysis of vector cellular automata model for land cover change. Comput. Environ. Urban Syst. 2024, 109, 102090. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, X.; Yao, A.; Hillman, A.L.; Jiang, Z.; Wang, R.; Yang, X. Unraveling the early human impacts on the ecosystem of Dianchi Lake: A 20,000-year diatom record from the southeastern Tibetan Plateau. Quat. Sci. Rev. 2024, 337, 108813. [Google Scholar] [CrossRef]
- Cai, F.; Tang, B.-H.; Sima, O.; Chen, G.; Zhang, Z. Fine Extraction of Plateau Wetlands Based on a Combination of Object-Oriented Machine Learning and Ecological Rules: A Case Study of Dianchi Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5364–5377. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yu, P.; Feng, M.; Liu, B.; Bai, S.; Gu, S.; Chen, Y. Demarcation and administration of watershed ecological protection red line considering the ecological security pattern—A case of the Qilu Lake watershed, Yunnan Province. J. Lake Sci. 2020, 32, 89–99. [Google Scholar]
- Wang, Z.; Li, W.; Li, Y.; Qin, C.; Lv, C.; Liu, Y. The “Three Lines One Permit” policy: An integrated environmental regulation in China. Resour. Conserv. Recycl. 2020, 163, 105101. [Google Scholar] [CrossRef]
- Shen, M.; Liu, Y.; Zheng, H.; Chen, J. Evaluation of Water Source Conservation Service Value and Its Spatial Transfer in Yangtze River Basin. J. Yangtze River Sci. Res. Inst. 2024, 41, 14–22. [Google Scholar]
- Zhang, W.; Fu, J. Rainfall erosivity estimation under different rainfall amount. Resour. Sci. 2003, 25, 35–41. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A Modeling Approach to Determining the Relationship Between Erosion and Soil Productivity. Trans. ASAE 1984, 27, 0129–0144. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, A.; Li, Q. Optimization of Land Use Structure Based on the Coupling of GMOP and PLUS Models: A Case Study of Lvliang City, China. Land 2024, 13, 1335. [Google Scholar] [CrossRef]
- Yang, S.; Jin, Z. Impact of road network expansion on landscape ecological risk and soil erosion sensitivity on the Luochuan Tableland of the Chinese Loess Plateau. Reg. Environ. Change 2024, 24, 37. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Yu, Y.; Cui, W.; Liu, S.; Yu, T.; Song, Y. Evolutionary analysis of landscape ecological risk in Baili Rhododendron National Forest Park. PLoS ONE 2025, 20, e0317851. [Google Scholar] [CrossRef]
- Yaermaimaiti, A.; Li, X.; Ge, X.; Liu, C. Analysis of landscape pattern and ecological risk change characteristics in Bosten Lake basin based on optimal scale. Ecol. Indic. 2024, 163, 112120. [Google Scholar] [CrossRef]
- Hou, X.; Song, B.; Zhang, X.; Wang, X.; Li, D. Multi-scenario Simulation and Spatial-temporal Analysis of LUCC in China’s Coastal Zone Based on Coupled SD-FLUS Model. Chin. Geogr. Sci. 2024, 34, 579–598. [Google Scholar] [CrossRef]
- Mutale, B.; Qiang, F. Modeling future land use and land cover under different scenarios using patch-generating land use simulation model. A case study of Ndola district. Front. Environ. Sci. 2024, 12, 1362666. [Google Scholar] [CrossRef]
- Koko, A.F.; Han, Z.; Wu, Y.; Zhang, S.; Ding, N.; Luo, J. Spatiotemporal Analysis and Prediction of Urban Land Use/Land Cover Changes Using a Cellular Automata and Novel Patch-Generating Land Use Simulation Model: A Study of Zhejiang Province, China. Land 2023, 12, 1525. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S. Identifying the drivers of land expansion and evaluating multi-scenario simulation of land use: A case study of Mashan County, China. Ecol. Inform. 2023, 77, 102201. [Google Scholar] [CrossRef]
- Gan, L.; Halik, Ü.; Shi, L.; Welp, M. Ecological risk assessment and multi-scenario dynamic prediction of the arid oasis cities in northwest China from 1990 to 2030. Stoch. Environ. Res. Risk Assess. 2023, 37, 3099–3115. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Hao, B.; Zhang, S.; Ding, J.; He, B. Multi-Scenario Simulation of Future Land Use in the Beijiang River Basin Under Multidimensional Ecological Constraints. Sustainability 2024, 16, 10910. [Google Scholar] [CrossRef]
- Gong, J.; Du, H.; Sun, Y.; Zhan, Y. Simulation and prediction of land use in urban agglomerations based on the PLUS model: A case study of the Pearl River Delta, China. Front. Environ. Sci. 2023, 11, 1306187. [Google Scholar] [CrossRef]
- Ma, X.; Li, J.; Li, G. Simulation and multi-scenario prediction of land-use change in the Gansu section of the Yellow River Basin, China. Front. Environ. Sci. 2024, 12, 1403248. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; He, N.; Jin, G. Future land use simulation model-based landscape ecological risk prediction under the localized shared socioeconomic pathways in the Xiangjiang River Basin, China. Environ. Sci. Pollut. Res. 2024, 31, 22774–22789. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Pan, B.; Pan, Z.; Xu, N.; Wu, J.; Sun, W.; Hou, B.; Dong, Y. A clustering approach based on high-resolution ecological vulnerability index reveals spatial patterns of per- and polyfluoroalkyl substances pollution in lakes on the Tibetan Plateau. Water Res. 2025, 279, 123461. [Google Scholar] [CrossRef] [PubMed]
- Shamuxi, A.; Han, B.; Jin, X.; Wusimanjiang, P.; Abudukerimu, A.; Chen, Q.; Zhou, H.; Gong, M. Spatial pattern and driving mechanisms of dryland landscape ecological risk: Insights from an integrated geographic detector and machine learning model. Ecol. Indic. 2025, 172, 113305. [Google Scholar] [CrossRef]
- Yan, J.; Li, J.; Yao, X.; Li, Q.; Zheng, Z.; Li, G.; Qi, G.; Ma, W.; Song, M.; Gao, P. Ecological security pattern construction based on landscape ecological risk assessment in the Yellow River basin. Front. Environ. Sci. 2025, 13, 1514599. [Google Scholar] [CrossRef]
Data/Year | Data Source | Description | Data Type/Resolution |
---|---|---|---|
Land use data/2000, 2010, 2020 | Publicly available datasets at Wuhan University [33] | For 2030 land use modeling and ecological risk assessment | Raster/30 m |
Distance to road | National Geographic Information Resources Catalog Service System (https://www.webmap.cn) accessed on 1 April 2024 | For land use modeling for 2030 | Vector |
Distance to town | |||
Population density/2000, 2010, 2020 | WorldPop (https://www.worldpop.org/) accessed on 1 April 2024 | Raster/1 km | |
Night light/2000, 2010, 2020 | Resource and Environmental Science and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn) accessed on 1 April 2024 | ||
Elevation | Geospatial Data Cloud (http://www.gscloud.cn) accessed on 1 April 2024 | For land use modeling and EFI and ESE evaluation for 2030 | Raster/90 m |
Slope | |||
Average annual temperature/2000, 2010, 2020 | Resource and Environmental Science and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn) accessed on 1 April 2024 | Raster/1 km | |
Annual precipitation | Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn/home) accessed on 1 April 2024 | ||
Evaporation/2000, 2010, 2020 | Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn/home) accessed on 1 April 2024 | For ecological importance and sensitivity assessment | |
Soil | Harmonized World Soil Database (https://gaez.fao.org/pages/hwsd) accessed on 1 April 2024 |
Index | Formula | Description | |
---|---|---|---|
EFI | Water source protection | The average annual precipitation, evapotranspiration, root depth, and effective water content of plants were imported into the InVEST model to calculate the water yield. The formula for calculating the importance of water source protection ecological function was taken from [36]. | |
Soil and water conservation | The formula for calculating the erosive power of average annual rainfall was taken from [37], and the formula for calculating soil erodibility was taken from [38]. These formulas, along with other relevant data, were imported into the InVEST model for calculation. Finally, the results of the EFI of soil and water conservation were obtained. | ||
Biodiversity | This part can be calculated by referring to the formula in the GDERI. | ||
ESE | Soil and water erosion | ||
Rock desertification |
Land Use | Cultivated Land | Woodland | Grassland | Water | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|
NS | Cultivated land | 1 | 1 | 1 | 0 | 0 | 0 |
Woodland | 1 | 1 | 1 | 1 | 0 | 1 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Water | 0 | 0 | 0 | 1 | 1 | 1 | |
Construction land | 0 | 0 | 0 | 0 | 1 | 1 | |
Unused land | 1 | 1 | 1 | 1 | 1 | 1 | |
ES | Cultivated land | 1 | 0 | 0 | 0 | 1 | 1 |
Woodland | 0 | 1 | 0 | 0 | 0 | 0 | |
Grassland | 0 | 1 | 1 | 0 | 0 | 0 | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | |
Construction land | 0 | 1 | 0 | 1 | 1 | 0 | |
Unused land | 1 | 1 | 1 | 1 | 1 | 1 | |
PS | Cultivated land | 1 | 0 | 1 | 0 | 1 | 0 |
Woodland | 1 | 1 | 1 | 0 | 1 | 0 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Water | 1 | 0 | 1 | 1 | 1 | 1 | |
Construction land | 1 | 1 | 1 | 1 | 1 | 1 | |
Unused land | 0 | 0 | 0 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, Q.; Yi, J.; Wang, Q.; Ren, Q.; Li, Y.; Gao, Z.; Li, Y.; Wu, H. An Ecological Risk Assessment of the Dianchi Basin Based on Multi-Scenario Land Use Change Under the Constraint of an Ecological Defense Zone. Land 2025, 14, 868. https://doi.org/10.3390/land14040868
Wang S, Xu Q, Yi J, Wang Q, Ren Q, Li Y, Gao Z, Li Y, Wu H. An Ecological Risk Assessment of the Dianchi Basin Based on Multi-Scenario Land Use Change Under the Constraint of an Ecological Defense Zone. Land. 2025; 14(4):868. https://doi.org/10.3390/land14040868
Chicago/Turabian StyleWang, Shu, Quanli Xu, Junhua Yi, Qinghong Wang, Qihong Ren, Youyou Li, Zhenheng Gao, You Li, and Huishan Wu. 2025. "An Ecological Risk Assessment of the Dianchi Basin Based on Multi-Scenario Land Use Change Under the Constraint of an Ecological Defense Zone" Land 14, no. 4: 868. https://doi.org/10.3390/land14040868
APA StyleWang, S., Xu, Q., Yi, J., Wang, Q., Ren, Q., Li, Y., Gao, Z., Li, Y., & Wu, H. (2025). An Ecological Risk Assessment of the Dianchi Basin Based on Multi-Scenario Land Use Change Under the Constraint of an Ecological Defense Zone. Land, 14(4), 868. https://doi.org/10.3390/land14040868