Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Extreme Climate Indices
2.4. Response Mechanism Analysis
3. Results
3.1. Spatiotemporal Distribution of GPP
3.2. Spatiotemporal Distribution of Normal and Extreme Climate Indices
3.2.1. Temporal Variation Characteristics
3.2.2. Spatial Variation Characteristics
3.3. Response Mechanism of GPP to Extreme and Normal Climate Conditions
3.3.1. Temporal Lag Effects of GPP on Extreme and Normal Climate Indices
3.3.2. Response Mechanism of GPP to Climate Change
3.4. Spatiotemporal Distribution Trends of GPP Under CMIP6 Climate Change Scenarios
4. Discussion
4.1. Insights from the Dynamic Tendency of GPP and Climate Change
4.2. Response Mechanism of GPP to Climate Change
4.3. Future Trends of Variation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPP | Gross Primary Productivity |
NFYS | the Yinshan Mountains |
AR6 | Sixth Assessment Report |
ECI | Extreme Climate Indices |
Abb | abbreviation |
SR | spatial resolution |
TS | Time Span |
PLS-SEM | Partial Least Squares Structural Equation Modeling |
ETCCDI | the Expert Team on Climate Change Detection and Indices |
CF | Climate and Forecast |
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Qi, X.; Tang, Y.; Zhou, Y.; Li, D. A Comparison Study of Extreme Climate Changes in Different Areas in Northern China. Nat. Sci. 2017, 5, 79–87. [Google Scholar]
- Jiang, S.; Zhang, L.; Jing, Y.; Li, P.; Ren, X.; He, H. Spatial and Temporal Distribution Characteristics of Regional Extreme Climate Events in China from 1981 to 2015. Res. Soil Water Conserv. 2023, 30, 295–306. [Google Scholar]
- Li, X.; Ma, H.; Ran, Y.; Wang, X.; Zhu, G.; Liu, F.; He, H.; Zhang, Z.; Huang, C. Terrestrial carbon cycle model-data fusion: Progress and challenges. Sci. China Earth Sci. 2021, 64, 1645–1657. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Guo, S.; Wang, J.; Chen, J.; Zhang, Q.; Gu, L.; Yang, Y.; Tian, J.; Xiong, L.; Zhang, Y. Thermodynamic driving mechanisms for the formation of global precipitation extremes and ecohydrological effects. Sci. China Earth Sci. 2023, 66, 92–110. [Google Scholar] [CrossRef]
- Liu, X.C. The Response of Vegetation in the Mid-to-High Latitude Regions of Asia to Past and Future Extreme Climate Events. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2022. [Google Scholar]
- Yuan, M.; Zhu, Q.; Zhang, J.; Liu, J.; Chen, H.; Peng, C.; Li, P.; Li, M.; Wang, M.; Zhao, P. Global response of terrestrial gross primary productivity to climate extremes. Sci. Total Environ. 2021, 750, 142337. [Google Scholar] [CrossRef]
- Du, J.; Bao, G.; Tong, S.; Huang, X.; Wen, D.; Mei, L.; Bao, Y. Variations in vegetation cover and its relationship with climate change and human activities in Mongolia during the period 1982–2015. Acta Prataculturae Sin. 2021, 30, 1–13. [Google Scholar]
- Pan, S.; Yang, J.; Tian, H.; Shi, H.; Chang, J.; Ciais, P.; Francois, L.; Frieler, K.; Fu, B.; Hickler, T.; et al. Climate extreme versus carbon extreme: Responses of terrestrial carbon fluxes to temperature and precipitation. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005252. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, A.M.; Baldocchi, D.; Bonan, B.G.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Lu, J.; Yan, F. The divergent resistance and resilience of forest and grassland ecosystems to extreme summer drought in carbon sequestration. Land 2023, 12, 1672. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, D.; Huang, C.; Ciais, P.; Yao, Y.; Friedlingstein, P.; Sitch, S.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agric. For. Meteorol. 2019, 275, 47–58. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Zhang, Y.; Piao, S.; Sun, Y.; Roger, B.M.; Li, X.Y.; Lian, X.; Liu, Z.; Chen, A.; Peñuelas, J. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nat. Clim. Change 2022, 12, 581–586. [Google Scholar] [CrossRef]
- Geng, Q.; Chen, X.; He, X.; Tian, Z. Vegetation dynamics and its response to climate change and human activities based on different vegetation types in China. Acta Ecol. Sin. 2022, 42, 3557–3568. [Google Scholar]
- Zscheischler, J.; Mahecha, M.D.; Buttlar, J.V.; Harmeling, S.; Jung, M.; Rammig, A.; Randerson, J.T.; Schölkopf, B.; Seneviratne, S.I.; Tomelleri, E.; et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 2014, 9, 035001. [Google Scholar] [CrossRef]
- Liu, M.; Wang, H.; Zhai, H.; Zhang, X.; Shakir, M.; Ma, J.; Sun, W. Identifying thresholds of time-lag and accumulative effects of extreme precipitation on major vegetation types at global scale. Agric. For. Meteorol. 2024, 358, 110239. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Piao, S.; Fang, Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Piao, S.; Zhang, X.; Chen, A.; Liu, Q.; Lian, X.; Wang, X.; Peng, S.; Wu, X. The Impact of Extreme Climate Events on Terrestrial Ecosystem Carbon Cycling. Sci. Sin. Terrae 2019, 49, 1321–1334. [Google Scholar]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Velde, M.V.D.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, R.; Bento, V.A.; Leng, S.; Qi, J.; Zeng, J.; Wang, Q. The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sens. 2022, 14, 4658. [Google Scholar] [CrossRef]
- Liu, P. Variation Characteristics of NDVI and GPP and Their Response to Extreme Climate in the Loess Plateau. Master’s Thesis, College of Water Resources and Architectural Engineering, Xianyang, China, 2022. [Google Scholar]
- Zhang, Y. Effects of extreme climate events on meadow ecosystem vulnerability in Inner Mongolia, China. Master’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2024. [Google Scholar]
- Wang, Y.; Chen, J.; Zhou, G.; Shao, C.; Chen, J.; Yu, W.; Song, J. Predominance of precipitation event controls ecosystem CO2 exchange in an Inner Mongolian desert meadow, China. J. Clean. Prod. 2018, 197, 781–793. [Google Scholar]
- Yu, Z.; Liu, Q.; Zhang, Y.; Ju, L.; Miu, L. Changes of NDVI and driving factors in different grasslands in the Inner Mongolia. Acta Ecol. Sin. 2024, 44, 10068–10082. [Google Scholar]
- Liu, J.; Zhang, Z.; Feng, K.; Wang, F.; Zhang, W.; Wang, S.; Sun, L.; Guo, H. Spatiotemporal evolution characteristics and driving factors of net primary productivity of vegetation in the Inland River Basin of the Inner Mongolia Plateau. Acta Ecol. Sin. 2024, 44, 10055–10067. [Google Scholar]
- Yuan, M.; Zhao, L.; Li, X.; Lin, A. Diverse response of end of growing season to extreme climate events in different grasslands in temperate China during 1982–2015. Acta Ecol. Sin. 2023, 43, 6015–6032. [Google Scholar]
- Lokman, M.; Humayain, M.; Salma, U.; Rubaiyat, A. Response of grassland net primary productivity to dry and wet climatic events in four grassland types in Inner Mongolia. Plant Environ. Interact. 2021, 2, 250–262. [Google Scholar]
- Guo, Z.; Lou, W.; Sun, C.; He, B. Trend changes of the vegetation activity in northeastern East Asia and the connections with extreme climate indices. Remote Sens. 2022, 14, 3151. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wang, Z.; Zhang, H.; Chen, X.; Wen, Z.; Lin, Z.; Han, P.; Xue, T. Quantifying the Spatiotemporal Changes in Evapotranspiration and Its Components Driven by Vegetation Greening and Climate Change in the Northern Foot of Yinshan Mountain. Remote Sens. 2024, 16, 357. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, H. China Downscaled CMIP6 Precipitation, Temperature and Wind Speed Dataset (1979–2100); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2023. [Google Scholar]
- Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef]
- Song, J.X.; Zhou, L.; Zhou, G.; Yan, Y.; Zhang, S. A dataset of carbon and water fluxes of the temperate desert meadow in Damao Banner, Inner Mongolia (2015–2018). China Sci. Data 2023, 8, 1–9. [Google Scholar]
- Li, C. Research on the Characteristics and Effects of Climate Extremes on Multi-spatial-temporal Scales in the Mongolian Plateau. Ph.D. Thesis, East China Normal University, Shanghai, China, 2019. [Google Scholar]
- Jing, J.; He, C.; Wang, Y.; Ma, B.; Liu, B. Spatiotemporal evolution characteristics of meteorological drought in Southwest China from 1902 to 2018. Res. Soil Water Conserv. 2022, 29, 220–227. [Google Scholar]
- Kang, Y.; Guo, E.; Wang, Y.; Bao, Y.; Bao, Y.; Na, R. Application of temperature vegetation dryness index for drought monitoring in Mongolian Plateau. Chin. J. Appl. Ecol. 2021, 32, 2534–2544. [Google Scholar]
- Zhao, J.; Guo, E.; Wang, Y.; Kang, Y.; Gu, X. Ecological drought monitoring of Inner Mongolia vegetation growing season based on Kernel temperature vegetation drought index. Chin. J. Appl. Ecol. 2023, 34, 2929–2937. [Google Scholar]
- Fareed, N.; Numata, I.; Cochrane, M.; Novoa, S.; Tenneson, K.; Melo, A.; Silva, S.; Oliveria, M.; Nicolau, A.; Zutta, B. Aboveground biomass modeling using simulated Global Ecosystem Dynamics Investigation (GEDI) waveform LiDAR and forest inventories in Amazonian rainforests. For. Ecol. Manag. 2025, 578, 122491. [Google Scholar] [CrossRef]
- Rajadurai, J.; Hanafi, W.; Bathmanathan, V.; Daud, S.; Azami, N. Developing nexus eco-purchasing behaviour index (NEPBI) for Malaysia by using partial least square analysis. Qual. Quant. 2021, 55, 2017–2039. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, J.; Wang, G.; Yan, Q.; Sun, T.; Song, L.; Gao, T.; Sun, Y.; Li, X.; Yang, K.; et al. Assessing the ecological effects of the World’s Largest Forestry Eco-engineering: Three-North Protective Forest Program within the initially scheduled range from 1978 to 2022. Sci. China Life Sci. 2024, 68, 314–327. [Google Scholar] [CrossRef]
- Kong, R. Analysis on the Evolution and Driving Force of Meadows Aboveground Biomass Carbon in Northwestern China Under Changing Environment. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2020. [Google Scholar]
- Sun, H.; Cheng, Y.; An, Q.; Liu, L. Evolution and Mechanism Analysis of Terrestrial Ecosystems in China with Respect to Gross Primary Productivity. Land 2024, 13, 1346. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.; Wang, Y.; Sa, C.; Bao, Y.; Liu, T. Mutual feedback relationship between vegetation GPP and soil moisture in China under climate change. Acta Geogr. Sin. 2024, 79, 218–239. [Google Scholar]
- Sun, Z.; Wang, X.; Yamamoto, H.; Tani, H.; Zhong, G.; Yin, S.; Guo, E. Spatial pattern of GPP variations in terrestrial ecosystems and its drivers: Climatic factors, CO2 concentration, and land-cover change, 1982–2015. Ecol. Inf. 2018, 46, 156–165. [Google Scholar] [CrossRef]
- Fan, Y.; Liao, Z.; Long, Y.; Cheng, Y. Characteristics of vegetation net primary productivity change and its climatic driving forces in the Yinshanbeilu Meadow, Inner Mongolia. Water Resour. Hydropower Eng. 2024, 55, 38–50. [Google Scholar]
- Zhao, S.; Zhou, Q.; Wang, W.; Wu, Y. Dry-wet climate characteristics of Inner Mongolia based on standardized precipitation index. J. China Inst. Water Resour. Hydropower Res. 2022, 20, 10–19. [Google Scholar]
- Su, R.; Guo, E.; Wang, Y.; Yin, S.; Bao, Y.; Sun, Z.; Mandula, N.; Bao, Y. Vegetation Dynamics and Its Response to Extreme Climate on the Inner Mongolian Plateau during 1982–2020. Remote Sens. 2023, 15, 3891. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Pei, F.; Li, X.; Du, G. Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agric. For. Meteorol. 2018, 252, 130–143. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, C.; Zhou, J.; Li, Q. The Association of Drought with Different Precipitation Grades in the Inner Mongolia Region of Northern China. Water 2024, 16, 3292. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the cumulative and time-lag effects of drought on meadow vegetation: A case study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Fang, W. Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena 2020, 189, 104474. [Google Scholar] [CrossRef]
- Tao, J.; Bao, Y.; Guo, E.; Jin, E.; Husile; Bao, Y. Characteristics of the spatial and temporal evolution of winter drought in Inner Mongolia over the past 40 years. Arid Zone Res. 2024, 41, 387–398. [Google Scholar]
- Benson, D.O.; Dirmeyer, P. Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heat waves over the contiguous United States. J. Clim. 2021, 34, 2175–2187. [Google Scholar] [CrossRef]
- Knapp, A.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; James, K.; et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic meadow. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, H.; Zhang, S.; Hai, C.; Liu, B. Vegetation characteristics and soil properties in grazing exclusion areas of the inner Mongolia desert meadow. Int. Soil Water Conserv. Res. 2023, 11, 549–560. [Google Scholar] [CrossRef]
- Lai, Q. Simulation of GPP Based on Solar-Induced Chlorophyll Fluorescence and Its Response to Drought in Mongolian Plateau. Doctoral Thesis, Northeast Normal University, Changchun, China, 2021. [Google Scholar]
- Wrightson, I.; Anaraki, T.M.; Uyl, D.J.; Nadelhoffer, J.K.; Lajtha, K.; Simpson, J.M. Changes in litter and nitrogen deposition differentially alter forest soil organic matter biogeochemistry. Geochim. Cosmochim. Acta 2024, 374, 186–199. [Google Scholar] [CrossRef]
Data | Variables | Abb | SR | TS | Source |
---|---|---|---|---|---|
Meteorological Data | Maximum temperature | Tmax | 0.1 × 0.1° | 2001–2023 | ERA5 Climate and Forecast (CF) Metadata Convention v1.7 https://cds.climate.copernicus.eu/, accessed on 22 July 2024 |
Minimum temperature | Tmin | 0.25 × 0.25° | 2025–2035 | CMIP6 https://data.tpdc.ac.cn/, accessed on 22 July 2024 | |
Precipitation | PP | ||||
GPP Data | GOSIF-GPP | GPP | 0.05 × 0.05° | 2001–2023 | https://globalecology.unh.edu//data/GOSIF-GPP.html, accessed on 22 July 2024 |
CO2 flux | GPP | 2.3 m | 2015–2018 | http://www.csdata.org/p/837/, accessed on 22 July 2024 |
Lag Time | 0 | 1 | 2 | 3 | |
---|---|---|---|---|---|
Indices | |||||
PP | 0.88 *** | 0.916 *** | 0.79 *** | 0.921 *** | |
Tmax | 0.78 *** | 0.79 *** | 0.74 *** | 0.69 *** | |
Tmin | 0.81 *** | 0.80 *** | 0.74 *** | 0.71 *** |
Lag Time | 0 | 1 | 2 | 3 | |
---|---|---|---|---|---|
Indices | |||||
TXx | 0.72 *** | 0.7653 *** | 0.7654 *** | 0.75 *** | |
TNx | 0.78 *** | 0.81 *** | 0.74 *** | 0.7 *** | |
TXn | 0.83 *** | 0.8 *** | 0.7 *** | 0.66 *** | |
TNn | 0.86 *** | 0.81 *** | 0.73 *** | 0.68 *** | |
TX10P | 0.76 *** | 0.37 | 0.01 | −0.27 | |
TN10P | 0.73 | 0.34 | 0.27 | 0.13 *** | |
TX90P | 0.91 *** | 0.86 *** | 0.65 *** | 0.56 ** | |
TN90P | 0.94 *** | 0.91 *** | 0.62 ** | 0.54 ** | |
DTR | 0.36 | 0.54 ** | 0.67 *** | 0.73 *** | |
WSDI | 0.93 *** | 0.92 *** | 0.7 *** | 0.47 * | |
CSDI | 0.77 *** | 0.36 | 0.27 | 0.13 | |
FD0 | 0.61 ** | 0.37 | 0.27 | 0.13 | |
ID0 | 0.79 | 0.38 | −0.04 | −0.26 *** | |
SU25 | 0.94 *** | 0.92 *** | 0.64 *** | 0.61 ** | |
TR20 | 0.9 *** | 0.88 *** | 0.68 *** | 0.55 ** |
Lag Time | 0 | 1 | 2 | 3 | |
---|---|---|---|---|---|
Indices | |||||
R10 | 0.87 *** | 0.94 *** | 0.88 *** | 0.82 *** | |
R20 | 0.65 *** | 0.78 *** | 0.90 *** | 0.73 *** | |
R25 | 0.65 *** | 0.76 *** | 0.79 *** | 0.71 *** | |
R99P | 0.85 *** | 0.90 *** | 0.89 *** | 0.78 *** | |
R95P | 0.88 *** | 0.93 *** | 0.94 *** | 0.79 *** | |
CDD | 0.31 | 0.25 | 0.07 | 0.24 | |
CWD | 0.84 *** | 0.80 *** | 0.73 *** | 0.71 *** | |
PRCPTOT | 0.89 *** | 0.91 *** | 0.93 *** | 0.79 *** | |
RX1day | 0.78 *** | 0.83 *** | 0.90 *** | 0.83 *** | |
RX5day | 0.90 *** | 0.928 *** | 0.927 *** | 0.81 *** | |
SDII | 0.69 *** | 0.77 *** | 0.87 *** | 0.90 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhang, M.; Wu, Y.; Guo, E.; Wang, Y.; Cui, S.; Kolerski, T. Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate. Land 2025, 14, 884. https://doi.org/10.3390/land14040884
Zhao S, Zhang M, Wu Y, Guo E, Wang Y, Cui S, Kolerski T. Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate. Land. 2025; 14(4):884. https://doi.org/10.3390/land14040884
Chicago/Turabian StyleZhao, Shuixia, Mengmeng Zhang, Yingjie Wu, Enliang Guo, Yongfang Wang, Shengjie Cui, and Tomasz Kolerski. 2025. "Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate" Land 14, no. 4: 884. https://doi.org/10.3390/land14040884
APA StyleZhao, S., Zhang, M., Wu, Y., Guo, E., Wang, Y., Cui, S., & Kolerski, T. (2025). Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate. Land, 14(4), 884. https://doi.org/10.3390/land14040884