Coupling Coordination Evaluation of Ecological Security in Coal Resource-Exhausted Villages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Framework of Ecological Security in Coal Resource-Exhausted Villages
2.1.1. Evaluation of Ecological Security in Coal Resource-Exhausted Villages
System | Subsystem | Indicator | Connotation | Weight | Reference |
---|---|---|---|---|---|
Resistance support (RS) | Social Resilience | P11 Population density (−) | Registered population/Administrative village area | 0.0355 | Rui Zhang [29] |
P12 Proportion of elderly population (−) | Number of elderly population/Total rural population | 0.0288 | Xiaozhou [23] | ||
P13 Number of medical and health beds (+) | Total number of medical beds at all levels in rural areas | 0.0379 | Meizhu Hou [38] | ||
Resource Resilience | P21 Arable land per capita (+) | Total cultivated land area/Total population | 0.0479 | Yuqiu Jia [39] | |
P22 Per capita domestic water consumption (−) | Total domestic water consumption/Total population | 0.0333 | Xiaozhou [23] | ||
P23 Per capita domestic electricity consumption (−) | Total domestic electricity consumption/Total household population | 0.0346 | Xiaozhou [23] | ||
Environment Resilience | P31 Degree of land stress (−) | Reduction of arable land/Expansion of construction land | 0.0371 | Meizhu Hou [38] | |
P32 Degree of control over environmental events (+) | Initiative and efficiency in environmental protection and ecological crisis response | 0.0321 | Xuebin Zhang [40] | ||
P33 Proportion of resource extraction (−) | Dominant resource exploitation area/Rural arable area | 0.0303 | Eelu Wang [33] | ||
Status feature (SF) | Economic Status | S11 Per capital GDP (−) | Gross GDP/Total population | 0.0341 | Rui Zhang [29] |
S12 Ratio of secondary and tertiary industries (−) | Total amount of secondary industry/Total amount of tertiary industry | 0.0366 | Xiaozhou [23] | ||
S13 Mining industry as a percentage of GDP (−) | GDP of coal resources exploitation/Gross domestic product | 0.0280 | Eelu Wang [33] | ||
Resource Status | S21 Species richness index (+) | Sum of the number of different species in an ecosystem or community | 0.0505 | Changxue Wu [41] | |
S22 Forest and grass coverage rate in built-up area (+) | Total area of woodland and grassland/Total land use | 0.0494 | Xiaozhou [23] | ||
S23 Proportion of main resources consumed (−) | Major resources extracted/Total proven resources | 0.0376 | Meizhu Hou [38] | ||
Environment Status | S31 Water environment quality (−) | Refers to the annual number of water pollution incidents | 0.0282 | Rui Zhang [29] | |
S32 Air environmental quality (−) | Refers to the number of times the concentration of pollutants in the atmosphere exceeds the standard | 0.0228 | Rui Zhang [29] | ||
S33 Acoustic environmental quality (+) | Refers to the number of major noise polluters in rural areas | 0.0212 | Libang Ma [42] | ||
S34 Shannon’s diversity index (−) | A higher value indicates a higher species richness in that ecosystem or community | 0.0557 | Libang Ma [42] | ||
S35 CONTAG (+) | The higher the value, the better the connectivity between patches of the type | 0.0368 | Yuqiu Jia [39] | ||
S36 Landscape edge density (−) | Length of boundary around various landscape patches/total landscape area | 0.0451 | Libang Ma [42] | ||
Response mechanism (RM) | Environment Response | R11 Domestic sewage treatment rate (+) | The amount of sewage treated annually/The total amount of domestic sewage in the year | 0.0264 | Rui Zhang [29] |
R12 Harmless treatment rate of household garbage (+) | Amount of waste/Total amount of domestic waste treated harmlessly | 0.0294 | Meizhu Hou [38] | ||
R13 Degree of ecological function restoration (+) | Refers to the number of returning or new species/Number of lost species | 0.0390 | Changxue Wu [41] | ||
R14 Landscape Shape Index (−) | Complexity of landscape structure: the higher the value, the higher the complexity | 0.0443 | Changxue Wu [41] | ||
R15 Perimeter-area fractal dimension (+) | The higher the value, the more complex the landscape structure and the wider the distribution | 0.0367 | Yuqiu Jia [39] | ||
Technology Response | R21 Proportion of professional teachers (+) | Number of professional teachers/Total population | 0.0279 | Ma Xiaobin [36] | |
R22 Proportion of scientific and technological personnel (+) | Number of scientific and technical personnel/Total population | 0.0323 | Eelu Wang [33] |
2.1.2. Coupling Coordination Degree Analysis
2.1.3. Grey Relational Analysis
2.2. Study Area
2.3. Data Sources
3. Results
3.1. Evolution Characteristics of Ecological Security in CREVs
3.1.1. Resistance Support Assessment Results
3.1.2. Status Feature Assessment Results
3.1.3. Response Mechanism Assessment Results
3.2. Coupling Coordination Degree Spatio-Temporal Evolution of Ecological Security
3.2.1. Coupled Coordination Time Series Analysis of CREVs
3.2.2. Spatial Coupling Coordination Degree Analysis of CREVs
3.3. Influencing Factors of Coupling Coordination Degree of Ecological Security
4. Discussion
4.1. Compared with the Results of Previous Studies
4.2. Advantages of the Study Methodology
4.3. CREVs Ecological Security Strategies from the Perspective of Coupling Coordination
4.4. Contributions and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCD | Coupling Coordination Degree |
CREVs | Coal Resource-Exhausted Villages |
DQV | Daquan Village |
DWV | Dawu Village |
ESA | Ecological Security Assessment |
GCM | Grey Correlation Method |
LKV | Laokuang Village |
PAV | Pananhu Village |
PSR | Pressure-Status-Response |
QSV | Qingshanquan Village |
RS-SF-RM | Resistance support-Status feature-Response mechanism |
SENCE | Social–Economic–Natural Complex Ecosystem |
ZZV | Zizhuang Village |
References
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.T.; Bebbington, A.; Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extr. Ind. Soc. 2019, 6, 993–1012. [Google Scholar] [CrossRef]
- Horowitz, L.S.; Keeling, A.; Lévesque, F.; Rodon, T.; Schott, S.; Thériault, S. Indigenous peoples’ relationships to large-scale mining in post/colonial contexts: Toward multidisciplinary comparative perspectives. Extr. Ind. Soc. 2018, 5, 404–414. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Du, Y.; Zhang, L.; Hu, X. Ecological suitability evaluation for mountainous area development based on conceptual model of landscape structure, function, and dynamics. Ecol. Indic. 2016, 61, 500–511. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Demonstrating the need for a just transition: Socioeconomic diagnosis of polish cities living on hard coal mining. Resour. Policy 2024, 89, 104576. [Google Scholar] [CrossRef]
- Mueller, R.M. Surface coal mining and public health disparities: Evidence from Appalachia. Resour. Policy 2022, 76, 102567. [Google Scholar] [CrossRef]
- Avkopashvili, M.; Avkopashvili, G.; Avkopashvili, I.; Asanidze, L.; Matchavariani, L.; Gongadze, A.; Gakhokidze, R. Mining-Related Metal Pollution and Ecological Risk Factors in South-Eastern Georgia. Sustainability 2022, 14, 5621. [Google Scholar] [CrossRef]
- Westin, S.; Schlesselman, J.J.; Korper, M. Long-term effects of a factory closure: Unemployment and disability during ten years’ follow-up. J. Clin. Epidemiol. 1989, 42, 435–441. [Google Scholar] [CrossRef]
- Cha, J.M. A just transition for whom? Politics, contestation, and social identity in the disruption of coal in the Powder River Basin. Energy Res. Soc. Sci. 2020, 69, 101657. [Google Scholar] [CrossRef]
- Wang, M.; Qin, K.; Li, J.; Yang, S. Explaining the transmission mechanism of social-ecological systems adaptive cycling on path dependency in resource-based cities: Evidence from Shanxi Province, China. Sustain. Futures 2025, 9, 100449. [Google Scholar] [CrossRef]
- He, S.Y.; Chen, X.; Es, M.; Guo, Y.; Sun, K.K.; Lin, Z. Liveability and migration intention in Chinese resource-based economies: Findings from seven cities with potential for population shrinkage. Cities 2022, 131, 103961. [Google Scholar] [CrossRef]
- Forget, M.; Rossi, M. Mining region value and vulnerabilities: Evolutions over the mine life cycle. Extr. Ind. Soc. 2021, 8, 176–187. [Google Scholar] [CrossRef]
- Li, W.; Yi, P.; Zhang, D.; Zhou, Y. Assessment of coordinated development between social economy and ecological environment: Case study of resource-based cities in Northeastern China. Sust. Cities Soc. 2020, 59, 102208. [Google Scholar] [CrossRef]
- Nan, B.; Zhai, Y.; Wang, M.; Wang, H.; Cui, B. Ecological Security Assessment, Prediction, and Zoning Management: An Integrated Analytical Framework. Engineering 2024, in press. [Google Scholar] [CrossRef]
- Deng, F.; Zhu, S.; Guo, J.; Sun, X. Exploring the quality of ecosystem services and the segmental impact of influencing factors in resource-based cities. J. Environ. Manag. 2025, 375, 124411. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Dong, Z.; Bian, Z.; Zhang, X.; Wei, Z. Spatiotemporal variations in the impacts of small-to medium-scale mines agglomeration scale on landscape pattern and ecological risk in the watershed in a semi-arid ecologically fragile area. Ecol. Indic. 2024, 166, 112319. [Google Scholar] [CrossRef]
- He, Y.; Wang, S.; Chen, N. Mineral rents, natural resources depletion, and ecological footprint nexus in high emitting countries: Panel GLM analysis. Resour. Policy 2024, 89, 104472. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, J. Optimization of landscape ecological risk assessment method and ecological management zoning considering resilience. J. Environ. Manag. 2025, 376, 124586. [Google Scholar] [CrossRef]
- Schröter, M.; Albert, C.; Marques, A.; Tobon, W.; Lavorel, S.; Maes, J.; Brown, C.; Klotz, S.; Bonn, A. National Ecosystem Assessments in Europe: A Review. Bioscience 2016, 66, 813–828. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Wang, R.; Liu, Y.; Lu, S. Identifying the coupling coordination relationship between urbanization and forest ecological security and its impact mechanism: Case study of the Yangtze River Economic Belt, China. J. Environ. Manag. 2023, 342, 118327. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Meng, X.; Cai, Y. The coupling and coordination between food production security and agricultural ecological protection in main food-producing areas of China. Ecol. Indic. 2023, 154, 110785. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, X.; Duan, Z. Coupling and coordination analysis in urban agglomerations of China: Urbanization and ecological security perspectives. J. Clean Prod. 2022, 365, 132730. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Fu, Y.; Jin, Q.; Zhao, Y.; Xiong, N. Ecological Security Evaluation Algorithm for Resource-Exhausted Cities Based on the PSR Model. Comput. Mater. Contin. 2021, 69, 985–1001. [Google Scholar] [CrossRef]
- Han, Z.; Deng, X. The impact of cross-regional social and ecological interactions on ecosystem service synergies. J. Environ. Manag. 2024, 357, 120671. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Li, Y.; Qin, Y. Research on the influencing factors and multi-scale regulatory pathway of ecosystem health: A case study in the Middle Reaches of the Yellow River, China. J. Clean Prod. 2023, 406, 137038. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, J.; Li, X.; Song, L.; Zhang, Z.; Zhang, S.; Zhang, W.; Dong, J.; Dong, X. Ecological security assessment and ecological management zoning based on ecosystem services in the West Liao River Basin. Ecol. Eng. 2023, 192, 106973. [Google Scholar] [CrossRef]
- Xu, J.; Yin, P.; Hu, W.; Fu, L.; Zhao, H. Assessing the ecological regime and spatial spillover effects of a reclaimed mining subsided lake: A case study of the Pan’an Lake wetland in Xuzhou. PLoS ONE 2020, 15, e238243. [Google Scholar] [CrossRef]
- Yao, L.; Liu, J.; Wang, R.; Yin, K.; Han, B. A qualitative network model for understanding regional metabolism in the context of Social–Economic–Natural Complex Ecosystem theory. Ecol. Inform. 2015, 26, 29–34. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, C.; Xiong, Y. Ecological security assessment of China based on the Pressure-State-Response framework. Ecol. Indic. 2023, 154, 110647. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Philbin, S.P.; Yang, X.; Dong, Z.; Hong, J.; Ballesteros-Pérez, P. Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus. Sci. Rep. 2022, 12, 5170. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Wong, C.; Li, Z.; Chen, J. Learning urban resilience from a social-economic-ecological system perspective: A case study of Beijing from 1978 to 2015. J. Clean Prod. 2018, 183, 343–357. [Google Scholar] [CrossRef]
- He, M.; Xiao, W.; Zhao, L.; Xu, Y. Spatiotemporal evolution pattern and heterogeneity of resource-based city resilience in China. Struct. Change Econ. Dyn. 2024, 71, 417–429. [Google Scholar] [CrossRef]
- Wang, D.; Huang, Z.; Wang, Y.; Mao, J. Ecological security of mineral resource-based cities in China: Multidimensional measurements, spatiotemporal evolution, and comparisons of classifications. Ecol. Indic. 2021, 132, 108269. [Google Scholar] [CrossRef]
- Bian, Z.; Lu, Q. Ecological effects analysis of land use change in coal mining area based on ecosystem service valuing: A case study in Jiawang. Environ. Earth Sci. 2013, 68, 1619–1630. [Google Scholar] [CrossRef]
- Ning, F.; Wang, H.; Chien, Y.; Pan, H.; Ou, S. A study on the spatial and temporal dynamics of landscape spatial patterns of different types of rural communities in Taiwan. Ecol. Indic. 2023, 157, 111227. [Google Scholar] [CrossRef]
- Xiaobin, M.; Biao, S.; Guolin, H.; Xing, Z.; Li, L. Evaluation and spatial effects of tourism ecological security in the Yangtze River Delta. Ecol. Indic. 2021, 131, 108190. [Google Scholar] [CrossRef]
- Yan, G.; Peng, Y.; Hao, Y.; Irfan, M.; Wu, H. Household head’s educational level and household education expenditure in China: The mediating effect of social class identification. Int. J. Educ. Dev. 2021, 83, 102400. [Google Scholar] [CrossRef]
- Hou, M.; Li, L.; Yu, H.; Jin, R.; Zhu, W. Ecological security evaluation of wetlands in Changbai Mountain area based on DPSIRM model. Ecol. Indic. 2024, 160, 111773. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Xu, M.; Yang, X. Landscape pattern indices for evaluating urban spatial morphology—A case study of Chinese cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Liu, Y.; Shi, J.; Du, H. Ecological Security Assessment and Territory Spatial Restoration and Management of Inland River Basin—Based on the Perspective of Production–Living–Ecological Space. Land 2023, 12, 1612. [Google Scholar] [CrossRef]
- Wu, C.; Gao, P.; Xu, R.; Mu, X.; Sun, W. Influence of landscape pattern changes on water conservation capacity: A case study in an arid/semiarid region of China. Ecol. Indic. 2024, 163, 112082. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Sirigiri, D.E.R. An Entropy-Based Risk Index (ERI) of Mining Health and Safety Using Clustering and Statistical Methods. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2023; p. 70. [Google Scholar]
- Liu, Y.; Li, J.; Zhan, X.; Zhao, H.; Wang, L.; Suk, S. Exploring the interactive coercing relationship between tourism and ecological environment: A case study in Kanto region, Japan. Environ. Dev. Sustain. 2025, 1–24. [Google Scholar] [CrossRef]
- Pai, T.; Hanaki, K.; Ho, H.; Hsieh, C. Using grey system theory to evaluate transportation effects on air quality trends in Japan. Transp. Res. Part D Transp. Environ. 2007, 12, 158–166. [Google Scholar] [CrossRef]
- Wang, F.; Tong, S.; Chu, Y.; Liu, T.; Ji, X. Spatio-Temporal Evolution of Key Areas of Territorial Ecological Restoration in Resource-Exhausted Cities: A Case Study of Jiawang District, China. Land 2023, 12, 1733. [Google Scholar] [CrossRef]
- Hu, T.; Chang, J.; Liu, X.; Feng, S. Integrated methods for determining restoration priorities of coal mining subsidence areas based on green infrastructure: A case study in the Xuzhou urban area, of China. Ecol. Indic. 2018, 94, 164–174. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.; Chen, Y.; Gu, S.; Li, C. Impacts of landscape patterns on habitat quality in coal resource-exhausted cities: Spatial–temporal dynamics and non-stationary scale effects. Environ. Monit. Assess. 2025, 197, 297. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, J.M.; Wu, K.N. Restoration of water system in coalmine subsided area with higher level of underground water -Taking Jiawang mining area of Xuzhou as an example in China. Adv. Mater. Res. 2012, 518, 4227–4232. [Google Scholar] [CrossRef]
- Alam, A.K.M.B.; Fujii, Y.; Eidee, S.J.; Boeut, S.; Rahim, A.B. Prediction of mining-induced subsidence at Barapukuria longwall coal mine, Bangladesh. Sci. Rep. 2022, 12, 14800. [Google Scholar] [CrossRef]
- Bailey, D.; Herzog, F.; Augenstein, I.; Aviron, S.; Billeter, R.; Szerencsits, E.; Baudry, J. Thematic resolution matters: Indicators of landscape pattern for European agro-ecosystems. Ecol. Indic. 2007, 7, 692–709. [Google Scholar] [CrossRef]
- Liu, T.; Ji, X.; Gong, Y. Wetland Functional Area Division Method: A Correlation Analysis of Water Quality and Landscape Structure. Sustainability 2022, 14, 14015. [Google Scholar] [CrossRef]
- Arora, A.; Schroeder, H. How to avoid unjust energy transitions: Insights from the Ruhr region. Energy Sustain. Soc. 2022, 12, 19. [Google Scholar] [CrossRef]
- Jalilov, S.; Amer, S.A.; Ward, F.A. Water, Food, and Energy Security: An Elusive Search for Balance in Central Asia. Water Resour. Manag. 2013, 27, 3959–3979. [Google Scholar] [CrossRef]
- Song, S.; Chen, X.; Liu, T.; Zan, C.; Hu, Z.; Huang, S.; De Maeyer, P.; Wang, M.; Sun, Y. Indicator-based assessments of the coupling coordination degree and correlations of water-energy-food-ecology nexus in Uzbekistan. J. Environ. Manag. 2023, 345, 118674. [Google Scholar] [CrossRef] [PubMed]
- Zimmerer, K.S.; Vaca, H.L.R. Fine-grain spatial patterning and dynamics of land use and agrobiodiversity amid global changes in the Bolivian Andes. Reg. Envir. Chang. 2016, 16, 2199–2214. [Google Scholar] [CrossRef]
- Machado, M.R.; Healy, M. Landscape multifunctionality, agroecology, and smallholders: A socio-ecological case study of the Cuban agroecological transition. Landsc. Res. 2024, 49, 685–703. [Google Scholar] [CrossRef]
- Benita, F.; Gaytán Alfaro, D. A linkage analysis of the mining sector in the top five carbon emitter economies. Reg. Sci. Policy Pract. 2024, 16, 12678. [Google Scholar] [CrossRef]
Coupling Coordination Degree | Coordination Level | Coupling Coordination Degree | Coordination Level |
---|---|---|---|
0.0 < D ≤ 0.1 | Serious Disorder (I) | 0.5 < D ≤ 0.6 | Forced Coordination (VI) |
0.1 < D ≤ 0.2 | Severe Disorder (II) | 0.6 < D ≤ 0.7 | Primary Coordination (VII) |
0.2 < D ≤ 0.3 | Moderate Disorder (III) | 0.7 < D ≤ 0.8 | Intermediate Coordination (VIII) |
0.3 < D ≤ 0.4 | Mild Disorder (IV) | 0.8 < D ≤ 0.9 | Good Coordination (IX) |
0.4 < D ≤ 0.5 | Borderline Disorder (V) | 0.9 < D ≤ 1.0 | Quality Coordination (X) |
Type | Data Type | Resolution | Data Sources |
---|---|---|---|
DEM | Raster data | 30 m | Geospatial data cloud Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) dataset (https://urs.earthdata.nasa.gov/) |
Land use/cover data | Raster data | 30 m | Resource and Environmental Science and Data Center of the Chinese Academy of Science (https://www.resdc.cn) |
Population density data | Raster data | 1 km | World Pop (https://hub.worldpop.org) |
Socio-economic data | Vector data | County level | China County Statistical Yearbook, and statistical yearbook data of Jiawang (https://www.xz.gov.cn) |
Administrative division boundary data | Vector data | County level | Resource and Environmental Science and Data Center of the Chinese Academy of Science (https://www.resdc.cn) |
Year | 2000 | 2004 | 2008 | 2012 | 2016 | 2021 |
---|---|---|---|---|---|---|
Daquan | 0.4598 | 0.5242 | 0.6100 | 0.6804 | 0.7148 | 0.7886 |
Laokuang | 0.4217 | 0.4651 | 0.5315 | 0.5982 | 0.6599 | 0.7542 |
Dawu | 0.4350 | 0.4500 | 0.5359 | 0.5799 | 0.6243 | 0.6599 |
Pananhu | 0.3527 | 0.4082 | 0.5832 | 0.6746 | 0.7823 | 0.8135 |
Qingshanquan | 0.4132 | 0.4273 | 0.5768 | 0.6402 | 0.7045 | 0.7211 |
Zizhuang | 0.3924 | 0.4432 | 0.4979 | 0.5724 | 0.6025 | 0.6145 |
Jiawang | 0.4125 | 0.4397 | 0.5559 | 0.6276 | 0.6814 | 0.7253 |
Indicator | Coupling Degree Excellent Region | Coupling Degree Equilibrium Region | Coupling Degree Lag Region | Jiawang | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DQV | PAV | Avg | LKV | DWV | Avg | QSV | ZZV | Avg | |||
Resistance support (RS) | P11 | 0.74 | 0.730 | 0.735 | 0.545 | 0.600 | 0.573 | 0.619 | 0.619 | 0.619 | 0.642 |
P12 | 0.709 | 0.732 | 0.721 | 0.689 | 0.589 | 0.639 | 0.619 | 0.572 | 0.596 | 0.652 | |
P13 | 0.714 | 0.765 | 0.740 | 0.670 | 0.599 | 0.635 | 0.693 | 0.570 | 0.632 | 0.669 | |
P21 | 0.694 | 0.694 | 0.694 | 0.585 | 0.599 | 0.592 | 0.619 | 0.605 | 0.612 | 0.633 | |
P22 | 0.744 | 0.759 | 0.752 | 0.701 | 0.722 | 0.712 | 0.610 | 0.593 | 0.602 | 0.688 | |
P23 | 0.772 | 0.732 | 0.752 | 0.710 | 0.561 | 0.636 | 0.679 | 0.576 | 0.628 | 0.672 | |
P31 | 0.710 | 0.728 | 0.719 | 0.748 | 0.561 | 0.655 | 0.661 | 0.593 | 0.627 | 0.667 | |
P32 | 0.813 | 0.715 | 0.764 | 0.703 | 0.669 | 0.686 | 0.645 | 0.593 | 0.619 | 0.690 | |
P33 | 0.702 | 0.525 | 0.614 | 0.706 | 0.721 | 0.714 | 0.644 | 0.581 | 0.613 | 0.647 | |
Status feature (SF) | S11 | 0.798 | 0.776 | 0.787 | 0.707 | 0.598 | 0.653 | 0.619 | 0.593 | 0.606 | 0.682 |
S12 | 0.580 | 0.525 | 0.553 | 0.670 | 0.521 | 0.596 | 0.592 | 0.691 | 0.642 | 0.597 | |
S13 | 0.603 | 0.702 | 0.653 | 0.625 | 0.545 | 0.585 | 0.557 | 0.683 | 0.620 | 0.619 | |
S21 | 0.680 | 0.739 | 0.710 | 0.737 | 0.621 | 0.679 | 0.635 | 0.593 | 0.614 | 0.668 | |
S22 | 0.680 | 0.762 | 0.721 | 0.781 | 0.832 | 0.807 | 0.668 | 0.593 | 0.631 | 0.719 | |
S23 | 0.811 | 0.702 | 0.757 | 0.691 | 0.667 | 0.679 | 0.640 | 0.593 | 0.617 | 0.684 | |
S31 | 0.751 | 0.759 | 0.755 | 0.726 | 0.665 | 0.696 | 0.703 | 0.593 | 0.648 | 0.700 | |
S32 | 0.750 | 0.838 | 0.794 | 0.706 | 0.628 | 0.667 | 0.662 | 0.593 | 0.628 | 0.696 | |
S33 | 0.765 | 0.794 | 0.780 | 0.670 | 0.667 | 0.669 | 0.686 | 0.593 | 0.640 | 0.696 | |
S34 | 0.736 | 0.747 | 0.742 | 0.684 | 0.620 | 0.652 | 0.638 | 0.549 | 0.594 | 0.662 | |
S35 | 0.715 | 0.702 | 0.709 | 0.708 | 0.650 | 0.679 | 0.649 | 0.593 | 0.621 | 0.670 | |
S36 | 0.650 | 0.702 | 0.676 | 0.695 | 0.517 | 0.606 | 0.601 | 0.593 | 0.597 | 0.626 | |
Response mechanism (RM) | R11 | 0.773 | 0.722 | 0.748 | 0.670 | 0.598 | 0.634 | 0.641 | 0.619 | 0.630 | 0.671 |
R12 | 0.754 | 0.718 | 0.736 | 0.670 | 0.610 | 0.640 | 0.668 | 0.619 | 0.644 | 0.673 | |
R13 | 0.782 | 0.718 | 0.750 | 0.708 | 0.668 | 0.688 | 0.651 | 0.565 | 0.608 | 0.682 | |
R14 | 0.720 | 0.739 | 0.730 | 0.670 | 0.654 | 0.662 | 0.771 | 0.562 | 0.667 | 0.686 | |
R15 | 0.731 | 0.702 | 0.717 | 0.670 | 0.529 | 0.600 | 0.661 | 0.570 | 0.616 | 0.644 | |
R21 | 0.803 | 0.702 | 0.753 | 0.670 | 0.640 | 0.655 | 0.693 | 0.553 | 0.623 | 0.677 | |
R22 | 0.707 | 0.902 | 0.805 | 0.706 | 0.561 | 0.634 | 0.644 | 0.523 | 0.584 | 0.674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, P.; Liu, T.; Cao, H.; Chen, H.; Chen, W. Coupling Coordination Evaluation of Ecological Security in Coal Resource-Exhausted Villages. Land 2025, 14, 897. https://doi.org/10.3390/land14040897
Luo P, Liu T, Cao H, Chen H, Chen W. Coupling Coordination Evaluation of Ecological Security in Coal Resource-Exhausted Villages. Land. 2025; 14(4):897. https://doi.org/10.3390/land14040897
Chicago/Turabian StyleLuo, Pingjia, Tianlong Liu, Haiyang Cao, Hao Chen, and Weixi Chen. 2025. "Coupling Coordination Evaluation of Ecological Security in Coal Resource-Exhausted Villages" Land 14, no. 4: 897. https://doi.org/10.3390/land14040897
APA StyleLuo, P., Liu, T., Cao, H., Chen, H., & Chen, W. (2025). Coupling Coordination Evaluation of Ecological Security in Coal Resource-Exhausted Villages. Land, 14(4), 897. https://doi.org/10.3390/land14040897