Driving Forces of Agricultural Land Abandonment: A Lithuanian Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
- Land ownership—categorized as private land, state-owned land, and unidentified land (most likely state-owned).
- Steepness of terrain—measured as slope in degrees, based on digital terrain models developed using elevation data from the GDR50LT dataset (https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7BC8F4086B-03E0-38A5-F5EF-F7A29A15923B%7D, accessed on 21 January 2025).
- Topographic wetness index, derived from digital terrain models using elevation data from the GDR50LT dataset.
- Soil granulometric composition—based on the DIRV_DB10LT dataset (https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B449450A9-AD8C-6E9E-6FCB-06A0584BF88C%7D, accessed on 21 January 2025).
- Soil productivity score—based on the DIRV_DB10LT dataset.
- Density of the underground drainage network—according to the Mel_DR2LT dataset (https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B2325543B-D0F7-4D2D-B486-6C10821DE7B5%7D, accessed on 21 January 2025).
- Distance to the nearest drainage network element—based on the Mel_DR2LT dataset.
- Distance to the nearest built-up block—from the Land Parcel Identification System (KZS_DR5LT) database (tps://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B05B2E0DB-31DC-7382-EBB7-7EC5531858A8%7D, accessed on 21 January 2025).
- Distance to the nearest road or railroad block—from the KZS_DR5LT database.
- Distance to the nearest linear water body—from the KZS_DR5LT database.
- Distance to the nearest areal water body—from the KZS_DR5LT database.
- Distance to the nearest agricultural block—from the KZS_DR5LT database; mainly used as a mask to define the search area for potential ALA.
- Distance to the nearest agricultural block with no history of agricultural crop declarations—from the KZS_DR5LT database; mainly used as a mask to identify areas without declarations for EU subsidies.
- Distance to the nearest unused land block—from the KZS_DR5LT database; mainly used as a mask to specify unused areas.
- Distance to the nearest forest land block—from the State Forest Cadastre database (https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7BBF626474-9B36-BFE6-2E43-EAEC396FCFE9%7D, accessed on 21 January 2025).
- Type of landscape use—classified as conservative, conservative-sustaining, sustaining-preserving, sustaining-intensive, intensive-conservative, or intensive.
- Degree of landscape culturalization—classified as forested, forested-agricultural, forested-lowly urbanized, agricultural, agricultural-lowly urbanized, agricultural-urbanized, or urbanized.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Castillo, C.P.; Chris Jacobs-Crisioni, C.; Diogo, V.; Lavalle, C. Modelling agricultural land abandonment in a fine spatial resolution multi-level land-use model: An application for the EU. Environ. Model. Softw. 2021, 136, 104946. [Google Scholar] [CrossRef]
- van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space-time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Leal Filho, W.; Mandel, M.; Al-Amin, A.Q.; Feher, A.; Chiappetta Jabbour, C.J. An assessment of the causes and consequences of agricultural land abandonment in Europe. Int. J. Sustain. Dev. World Ecol. 2017, 24, 554–560. [Google Scholar] [CrossRef]
- Keenleyside, C.; Tucker, G. Farmland Abandonment in the EU: An Assessment of Trends and Prospects; Institute for European Environmental Policy: London, UK, 2010; Available online: https://ieep.eu/wp-content/uploads/2022/12/Farmland_abandonment_in_the_EU_-_assessment_of_trends_and_prospects_-_FINAL_15-11-2010_.pdf (accessed on 3 January 2025).
- Fayet, C.M.J.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. The potential of European abandoned agricultural lands to contribute to the Green Deal objectives: Policy perspectives. Environ. Sci. Policy 2022, 133, 44–53. [Google Scholar] [CrossRef]
- Liu, B.; Song, W.; Sun, Q. Status, Trend and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16007. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Feng, Z.D.; Kung, H.; Johnson, V.C.; Ding, J.L.; Tashpolat, N.; Sawut, M.; Gui, D.W. Spatio-Temporal Patterns of Land Use/Cover Changes Over the Past 20 Years in the Middle Reaches of the Tarim River, Xinjiang, China. Land Degrad. Dev. 2015, 26, 284–299. [Google Scholar] [CrossRef]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- Hart, K.; Allen, B.; Lindner, M.; Keenleyside, C.; Burgess, P.; Eggers, J.; Buckwell, A. Land as an Environmental Resource. Report Prepared for DG Environment, 2013 Contract No ENV.B.1/ETU/2011/0029; Institute for European Environmental Policy: London, UK, 2013. [Google Scholar]
- Terres, J.M.; Hagyo, A.; Wania, A. Scientific Contribution on Combining Biophysical Criteria Underpinning the Delineation of Agricultural Areas Affected by Specific Constraints; Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2014; JRC92686. [Google Scholar]
- Macdonald, D.W.; Crabtree, J.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Vidyaratne, H.; Vij, A.; Regan, C.M. A socio-economic exploration of landholder motivations to participate in afforestation programs in the Republic of Ireland: The role of irreversibility, inheritance and bequest value. Land Use Policy 2020, 99, 104987. [Google Scholar] [CrossRef]
- Dessart, F.J.; Barreiro-Hurl’e, J.; Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. What is the future of abandoned agricultural lands? A systematic review of alternative trajectories in Europe. Land Use Policy 2022, 12, 105833. [Google Scholar] [CrossRef]
- Levers, C.; Müller, D.; Erb, K.; Haberl, H.; Jepsen, M.R.; Metzger, M.; Kuemmerle, T. Archetypical patterns and trajectories of land systems in Europe. Reg. Environ. Change 2018, 18, 715–732. [Google Scholar] [CrossRef]
- Tsendbazar, N.; Herold, M.; Lesiv, M.; Fritz, S. Copernicus Global Land Operations—Vegetation and Energy “CGLOPS-1”; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Larigauderie, A.; Mooney, H.A. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Moving a Step Closer to an IPCC-like Mechanism for Biodiversity. Curr. Opin. Environ. Sustain. 2010, 2, 9–14. [Google Scholar] [CrossRef]
- Qianru, C.; Hualin, X. Research Progress and Discoveries Related to Cultivated Land Abandonment. J. Resour. Ecol. 2021, 12, 165–174. [Google Scholar] [CrossRef]
- Pawlewicz, A.; Pawlewicz, K. The risk of agricultural land abandonment as a socioeconomic challenge for the development of agriculture in the European Union. Sustainability 2023, 15, 3233. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Nicolau, J.M.; Martins, J.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Reviews: Perspectives in Agriculture, Veterinary Science. Nutr. Nat. Resour. 2007, 2, 057. [Google Scholar] [CrossRef]
- Aquilué, N.; De Cáceres, M.; Fortin, M.-J.; Fall, A.; Brotons, L. A Spatial Allocation Procedure to Model Land-Use/Land-Cover Changes: Accounting for Occurrence and Spread Processes. Ecol. Model. 2017, 344, 73–86. [Google Scholar] [CrossRef]
- Esengulova, N.; Balena, P.; De Lucia, C.; Lopolito, A.; Pazienza, P. Key Drivers of Land Use Changes in the Rural Area of Gargano (South Italy) and Their Implications for the Local Sustainable Development. Land 2024, 13, 166. [Google Scholar] [CrossRef]
- Dibaba, W.T.; Demissie, T.A.; Miegel, K. Drivers and Implications of Land Use/Land Cover Dynamics in Finchaa Catchment, Northwestern Ethiopia. Land 2020, 9, 113. [Google Scholar] [CrossRef]
- Kabadayı, M.E.; Ettehadi Osgouei, P.; Sertel, E. Agricultural Land Abandonment in Bulgaria: A Long-Term Remote Sensing Perspective, 1950–1980. Land 2022, 11, 1855. [Google Scholar] [CrossRef]
- Ottaviano, M.; Marchetti, M. Census and Dynamics of Trees Outside Forests in Central Italy: Changes, Net Balance and Implications on the Landscape. Land 2023, 12, 1013. [Google Scholar] [CrossRef]
- Suziedelyte Visockiene, J.; Tumelienė, E.; Malienė, V. Analysis and identification of abandoned agricultural land using remote sensing methodology. Land Use Policy 2019, 82, 709–715. [Google Scholar] [CrossRef]
- Bucha, T.; Papčo, J.; Sačkov, I.; Pajtík, J.; Sedliak, M.; Barka, I.; Feranec, J. Woody Above-Ground Biomass Estimation on Abandoned Agriculture Land Using Sentinel-1 and Sentinel-2 Data. Remote Sens. 2021, 13, 2488. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, C.; Psomas, A. Mapping Secondary Forest Succession on Abandoned Agricultural Land with LiDAR Point Clouds and Terrestrial Photography. Remote Sens. 2015, 7, 8300–8322. [Google Scholar] [CrossRef]
- Schaldach, R.; Priess, A. Integrated Models of the Land System: A Review of Modeling Approaches on the Regional to Global Scale. Living Rev. Landsc. Res. 2008, 2, 1–34. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N. Simulation Models on Human—Nature Interactions in Urban Landscapes: A Review Including Spatial Economics, System Dynamics, Cellular Automata and Agent-based Approaches. Living Rev. Landsc. Res. 2009, 3, 2. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Pahlavani, P.; Askarian Omran, H.; Bigdeli, B. A Multiple Land Use Change Model Based on Artificial Neural Network, Markov Chain, and Multi Objective Land Allocation. Earth Obs. Geomat. Eng. 2017, 1, 82–99. [Google Scholar]
- Mozgeris, G.; Juknelienė, D. Modeling Future Land Use Development: A Lithuanian Case. Land 2021, 10, 360. [Google Scholar] [CrossRef]
- Juknelienė, D.; Palicinas, M.; Valčiukienė, J.; Mozgeris, G. Forestry Scenario Modelling: Qualitative Analysis of User Needs in Lithuania. Forests 2024, 15, 414. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; McCracken, D. Policy reform and agricultural land abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Diana, D.; Aswari, A. Legal Arrangements and Remedies for Abandoned Land: A Normative Study. Gold. Ratio Law Soc. Policy Rev. 2024, 2, 23–33. [Google Scholar] [CrossRef]
- Land Tax Law of the Republic of Lithuania. Available online: https://e-seimas.lrs.lt/portal/legalActEditions/lt/TAD/TAIS.2202 (accessed on 4 January 2025).
- Prishchepov, A.V.; Radeloff, V.; Baumann, M.; Kuemmerle, T.; Muller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ. Res. Lett. 2012, 7, 024021. [Google Scholar] [CrossRef]
- Dagiliūtė, R.; Kazanavičiūtė, V. Impact of Land-Use Changes on Climate Change Mitigation Goals: The Case of Lithuania. Land 2024, 13, 131. [Google Scholar] [CrossRef]
- Prokopová, M.; Cudlín, O.; Včelaková, R.; Lengyel, S.; Salvati, L.; Cudlín, P. Latent drivers of landscape transformation in Eastern Europe: Past, present and future. Sustainability 2018, 10, 2918. [Google Scholar] [CrossRef]
- Jarašiūnas, G.; Kinderienė, I. Evaluation of generic farming conditions in Eastern Lithuania. Žemės ūkio Moksl. 2015, 22, 65–73. [Google Scholar] [CrossRef]
- Sužiedelytė Visockienė, J.; Tumelienė, E. Abandoned Land Classification Using Classical Theory Method. Balt. Surv. 2019, 10, 61–69. [Google Scholar] [CrossRef]
- Abalikštienė, E.; Gudritienė, D. Perspectives of Appropriate Non-Productive Land Use in Lithuania. Balt. Surv. 2018, 8, 8–12. [Google Scholar] [CrossRef]
- TomášGoga, G.T.; JánFeranec, F.J.; Bucha, T.; Rusnák, M.; Sačkov, I.; Barka, I.; Kopecká, M.; Papčo, J.; Oťaheľ, J.; Szatmári, D.; et al. A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe. Remote Sens. 2019, 11, 2759. [Google Scholar] [CrossRef]
- Tumelienė, E.; Sužiedelytė Visockienė, J.; Malienė, V. The Influence of Seasonality on the Multi-Spectral Image Segmentation for Identification of Abandoned Land. Sustainability 2021, 13, 6941. [Google Scholar] [CrossRef]
- Juknelienė, D.; Valčiukienė, J.; Atkocevičienė, V. Assessment of regulation of legal relations of territorial planning: A case study in Lithuania. Land Use Policy 2017, 67, 65–72. [Google Scholar] [CrossRef]
- Brukas, A.; Galaunė, A.; Rutkauskas, A.; Daniulis, J.; Mozgeris, G. Remote Sensing and GIS in Lithuanian Forestry. In Conference on Remote Sensing and Forest Monitoring Proceedings, 1–3 June 1999-Rogow; Poland Warsaw Agricultural University, Faculty of Forestry Rogow: Brzeziny, Poland, 2000; pp. 124–132. [Google Scholar]
- Eastman, J.R. TerrSet Manual; Clark University: Worcester, MA, USA, 2015; p. 394. Available online: https://s45055.pcdn.co/centers/geospatial-analytics/www-content/blogs.dir/7/files/sites/354/2024/11/Terrset-2020-Manual.pdf (accessed on 3 January 2025).
- Sheng-fa, L.; Li, X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci. 2017, 27, 1123–1150. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Özdoğan, M.; Radeloff, V.C.; Keuler, N.S.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Bykovienė, A.; Pupka, D.; Aleknavičius, A. Žemės ūkio naudmenų ploto apskaita ir pokyčių analizė Lietuvoje. Žemės ūkio Moksl. 2014, 21, 250–264. [Google Scholar] [CrossRef]
- Anikėnienė, A.; Augūnienė, N.; Puzienė, R. Apleistų žemių tvarkymas bei kontrolė Lietuvos teritorijoje. Technol. Ir Men. 2019, 10, 8–11. [Google Scholar]
- Navarro, L.; Pereira, H. Rewilding abandoned landscapes in Europe. Ecosystems 2012, 15, 900–912. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Sitaula, R.; Sharma, P.; Chidi, C.L. Agricultural land abandonment and its impact on soil erosion in the Madi watershed, Gandaki province, Nepal. Geogr. J. Nepal 2024, 17, 53–70. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, F.; Chen, Y.; Xu, T.; Cheng, Z.; Liang, J. Assessment of reclamation treatments of abandoned farmland in an arid region of China. Sustainability 2016, 8, 1183. [Google Scholar] [CrossRef]
- Laiskhanov, S.; Smanov, Z.; Kaimuldinova, K.; Aliaskarov, D.; Myrzaly, N. Study of the ecological and reclamation condition of abandoned saline lands and their development for sustainable development goals. Sustainability 2023, 15, 14181. [Google Scholar] [CrossRef]
- Mukhtorov, U.; Gapparov, S.; Djumaev, Z.; Utaev, A.; Olloniyozov, S.; Karimov, E. Assessment of land reclamation status using remote sensing and gis in territory of Pakhtakor district of Uzbekistan. E3s Web Conf. 2023, 401, 02002. [Google Scholar] [CrossRef]
- Ceaușu, S.; Hofmann, M.; Navarro, L.; Carver, S.; Verburg, P.; Pereira, H. Mapping opportunities and challenges for rewilding in Europe. Conserv. Biol. 2015, 29, 1017–1027. [Google Scholar] [CrossRef]
- Stravinskienė, V. Ariamosios žemės naudojimo pokyčiai Vidurio Lietuvos rajonuose. Vandens ūkio Inžinerija Moksl. Darb. 2002, 21, 80–84. [Google Scholar]
- Maziliauskas, A.; Morkunas, V.; Rimkus, Z.; Šaulys, V. Economic incentives in land reclamation sector in Lithuania. Water Land Dev. 2007, 11, 17–30. [Google Scholar] [CrossRef]
- Mardosa, J. Lithuania’s Rural Settlements Structural Transformations in Soviet and Post-Soviet Period. In Liquid Structures and Cultures; Uniwersytet Szczeciński: Szczecin, Poland, 2017. [Google Scholar]
- Order No. D1-225. 2024. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/b71407c03d6111efb121d2fe3a0eff27?jfwid=-hd9rulwt8 (accessed on 28 February 2025).
- Sklenicka, P.; Zouhar, J.; Trpáková, I.; Vlasák, J. Trends in land ownership fragmentation during the last 230 years in Czechia, and a projection of future developments. Land Use Policy 2017, 67, 640–651. [Google Scholar] [CrossRef]
- Rudel, T.K.; Coomes, O.T.; Morán, E.F.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, É.F. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Change 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Otero, I.; Marull, J.; Aragay, E.; Diana, G.; Pons, M.; Coll, F.; Boada, M. Land abandonment, landscape, and biodiversity: Questioning the restorative character of the forest transition in the Mediterranean. Ecol. Soc. 2015, 20, 7(1)–7(15). [Google Scholar] [CrossRef]
- Kryszk, H.; Valčiukienė, J.; Juknelienė, D.; Mazur, A.; Kurowska, K. Declining interest in afforestation under the common agricultural policy. Evidence from Poland and Lithuania. Front. Environ. Sci. Sec. Environ. Policy Gov. 2024, 12, 1450374. [Google Scholar] [CrossRef]
- Magar, E.; Sharma, B.; Budha, B.; Khatri, G.; Gurung, D.; Marhatta, D. Impact of migration among farmers of Surkhet, Nepal. J. Multidisc. Res. Adv. 2024, 2, 8–13. [Google Scholar] [CrossRef]
- Egidi, G.; Hälbac-Cotoară-Zamfir, R.; Cividino, S.; Quaranta, G.; Salvati, L.; Colantoni, A. Rural in town: Traditional agriculture, population trends, and long-term urban expansion in metropolitan Rome. Land 2020, 9, 53. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Guo, S.; Xu, D. Why do aging households in agriculture prefer land abandonment to transfer? evidence from hill plots in Sichuan, China. Land Degrad. Dev. 2024, 35, 4985–4996. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Karczmarczuk, K.; Baran-Zgłobicka, B. Intensity and driving forces of land abandonment in eastern Poland. Appl. Sci. 2020, 10, 3500. [Google Scholar] [CrossRef]
- Ribokas, G. Apleistų žemių (dirvonų) problema retai apgyventose teritorijose. Kaimo Raidos Kryptys žinių Visuomenėje 2011, 2, 298–307. [Google Scholar]
- Astromskienė, A.; Ramanauskienė, J.; Adamonienė, R. Alternatyviosios veiklos kaimo vietovėse plėtros perspektyvos. Manag. Theory Stud. Rural. Bus. Infrastruct. Dev. 2012, 2, 6–14. [Google Scholar]
- Sroka, W.; Pölling, B.; Wojewodzic, T.; Strus, M.; Stolarczyk, P.; Podlinska, O. Determinants of Farmland Abandonment in Selected Metropolitan Areas of Poland: A Spatial Analysis on the Basis of Regression Trees and Interviews with Experts. Sustainability 2019, 11, 3071. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Junqueira, A.B.; Crouzeilles, R.; Peña-Claros, M.; Mesquita, R.C.G.; Bongers, F. The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. Biol. Rev. 2021, 96, 1114–1134. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Euskirchen, E.S.; Roberts, D.; Jaiteh, M.S.; Esseen, P.-A. Edge Influence on Forest Structure and Composition in Fragmented Landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Huxman, T.E.; Wilcox, B.P.; Breshears, D.D.; Scott, R.L.; Snyder, K.; Small, E.E.; Jackson, R.B. Ecohydrological implications of woody plant encroachment. Ecology 2005, 86, 308–319. [Google Scholar] [CrossRef]
- Osem, Y.; Lavi, A.; Rosenfeld, A. Colonization of pinus halepensis in mediterranean habitats: Consequences of afforestation, grazing and fire. Biol. Invasions 2010, 13, 485–498. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Sheffer, E.; Canham, C.D.; Kigel, J.; Perevolotsky, A. An integrative analysis of the dynamics of landscape- and local-scale colonization of mediterranean woodlands by pinus halepensis. PLoS ONE 2014, 9, e90178. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Gauthier, S. Young and old forest in the boreal: Critical stages of ecosystem dynamics and management under global change. For. Ecosyst. 2018, 5, 26. [Google Scholar] [CrossRef]
- Pedley, D.; McWilliam, W.; Doscher, C. Forests from the grass: Natural regeneration of woody vegetation in temperate marginal hill farmland under minimum interference management. Restor. Ecol. 2023, 31, e13852. [Google Scholar] [CrossRef]
- Gellrich, M.; Baur, P.; Zimmermann, N.E. Natural forest regrowth as a proxy variable for agricultural land abandonment in the Swiss mountains: A spatial statistical model based on geophysical and socio-economic variables. Environ. Model. Amp Assess. 2007, 12, 269–278. [Google Scholar] [CrossRef]
- Garbarino, M.; Morresi, D.; Urbinati, C.; Malandra, F.; Motta, R.; Sibona, E.; Weisberg, P.J. Contrasting land use legacy effects on forest landscape dynamics in the Italian alps and the Apennines. Landsc. Ecol. 2020, 35, 2679–2694. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Jactel, H. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Su, G.; Okahashi, H.; Chen, L. Spatial pattern of farmland abandonment in Japan: Identification and determinants. Sustainability 2018, 10, 3676. [Google Scholar] [CrossRef]
- Strijker, D. Marginal lands in europe—Causes of decline. Basic Appl. Ecol. 2005, 6, 99–106. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Novara, A.; Brevik, E.C.; Vaezi, A.R.; Fernández, M.P.; Keesstra, S. Long-term impact of rainfed agricultural land abandonment on soil erosion in the western mediterranean basin. Prog. Phys. Geogr. Earth Environ. 2018, 42, 202–219. [Google Scholar] [CrossRef]
- Forest Law of the Republic of Lithuania. Available online: https://e-tar.lt/portal/lt/legalAct/TAR.5D6D055CC00C/asr (accessed on 14 April 2025).
- Mozgeris, G.; Buivydaitė, V. On Possibilities of Quantitative Land Surface Analyses Methods in Soil Survey. Vagos 2004, 62, 31–43. [Google Scholar]
- Sang, Y.; Xin, L. Factors determining concurrent reclamation and abandonment of cultivated land on the Qinghai-Tibet plateau. Land 2023, 12, 1081. [Google Scholar] [CrossRef]
- Min, R.; Hong-Xin, Y.; Xu, M.; Qi, Y.; Xu, D.; Deng, X. Does institutional social insurance cause the abandonment of cultivated land? evidence from rural China. Int. J. Environ. Res. Public Health 2022, 19, 1117. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W.; Zhai, L. Land abandonment under rural restructuring in China explained from a cost-benefit perspective. J. Rural. Stud. 2016, 47, 524–532. [Google Scholar] [CrossRef]
- Nilsson, M.C.; Wardle, D.A. Understory vegetation as a forest ecosystem driver. Front. Ecol. Environ. 2005, 3, 421–428. [Google Scholar] [CrossRef]
- Tuomas, O.; Haapalehto, T.O.; Vasander, H.; Jauhiainen, S.; Tahvanainen, T.; Kotiaho, J.S. The Effects of Peatland Restoration on Water-Table Depth, Elemental Concentrations, and Vegetation: 10 Years of Changes. Restor. Ecol. 2011, 19, 587–598. [Google Scholar] [CrossRef]
- Song, Y.; Cai, X.; Tang, M.; Zhao, Y.; Liu, M. Update of cultivated land quality grade based on GIS—A case study of a county in Guangxi. Open J. Soil Sci. 2019, 9, 243–254. [Google Scholar] [CrossRef]
- Ihemezie, E.J.; Dallimer, M. Stakeholders’ perceptions on agricultural land-use change, and associated factors, in Nigeria. Environments 2021, 8, 113. [Google Scholar] [CrossRef]
- Bista, R.; Zhang, Q.; Parajuli, R.; Karki, R.; Chhetri, B.B.K.; Song, C. Cropland abandonment in the community-forestry landscape in the middle hills of Nepal. Earth Interact. 2021, 25, 136–150. [Google Scholar] [CrossRef]
- Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 045024. [Google Scholar] [CrossRef]
- Queirós, A.; Faria, D.; Almeida, F. Strengths and limitations of qualitative and quantitative research methods. Eur. J. Educ. Stud. 2017, 3, 369–387. [Google Scholar] [CrossRef]
- Rahman, M.S. The advantages and disadvantages of using qualitative and quantitative approaches and methods in language “testing and assessment” research: A literature review. J. Educ. Learn. 2017, 6, 102–112. [Google Scholar] [CrossRef]
- Creswell, J.W. Qualitative Inquiry and Research Design: Choosing Among Five Approaches, 3rd ed.; SAGE Publications, Inc.: Washington, DC, USA, 2013; p. 472. [Google Scholar]
- Order No. D1-199. 2008. Available online: https://e-seimasx.lrs.lt/portal/legalAct/lt/TAD/TAIS.318353/asr (accessed on 18 March 2025).
- Plan of the Territory of the Republic of Lithuania. Available online: https://www.bendrasisplanas.lt/# (accessed on 18 March 2025).
- National Forest Agreement. Available online: https://nacionalinismiskususitarimas.lt (accessed on 18 March 2025).
- Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on Nature Restoration and Amending Regulation (EU) 2022/869. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1991 (accessed on 14 April 2025).
- The European Green Deal. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN (accessed on 18 March 2025).
- The Fit for 55 Policy Package. Available online: https://www.consilium.europa.eu/en/policies/fit-for-55/ (accessed on 18 March 2025).
- New EU Forest Strategy for 2030. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0572 (accessed on 18 March 2025).
- EU Biodiversity Strategy for 2030. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (accessed on 18 March 2025).
- A Farm to Fork Strategy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 18 March 2025).
Id | Type of Institution | Professional Experience | Functions | Education | Participation in Research |
1 | University | Over 20 years | Education and research in the field | Land management | Yes |
2 | University | Over 20 years | Education and research in the field | Environmental engineering | Yes |
3 | University | Over 20 years | Education and research in the field | Land management | Yes |
4 | Law firm | From 5 to 10 years | Legal services in the field | Land management | Yes |
5 | National land service (state authority) | From 15 to 20 years | Supervising implementation of land management policies | Land management | No |
6 | National land service (state authority) | Over 20 years | Leading the implementation of land management policies | Land management | Yes |
7 | National land service (state authority) | From 15 to 20 years | Supervising implementation of land management policies | Land management | No |
8 | State land fund (state company) | Less than 5 years | Implementation of land management activities | Land management | No |
9 | Ministry of Environment (state authority) | Over 20 years | Building land and landscape management policies | Forestry | No |
10 | Municipality administration | Over 20 years | Implementation of land management | Land management | No |
11 | State service of protected areas (state authority) | From 5 to 10 years | Supervising implementation of landscape protection policies | Landscape management | Yes |
12 | National land service (state authority) | Over 20 years | Supervising implementation of land management policies | Land management | No |
13 | University | Over 20 years | Education and research in the field | Environmental engineering | Yes |
14 | State land fund (state company) | Over 20 years | Implementation of land management activities | Land management | No |
15 | University | Over 20 years | Education and research in the field | Agronomy | Yes |
16 | Retired expert | Over 20 years | Former expert in landscape and forest management | Forestry | Yes |
17 | Ministry of Environment (state authority) | Over 20 years | Building land and landscape management policies | Land and landscape management | Yes |
Driver | 2012–2018 | 2018–2021 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abandoned to Not Abandoned | Not Abandoned to Abandoned | Abandoned to Not Abandoned | Not Abandoned to Abandoned | |||||||||
IO * | One ** | All *** | IO | One ** | All *** | IO | One ** | All *** | IO | One ** | All *** | |
1. Land ownership | 5 | 76.1 | 61.6 | 6 | 80.5 | 50.0 | 11 | 84.1 | 50.5 | 5 | 84.6 | 50.1 |
2. Steepness of terrain | 13 | 84.2 | 51.8 | 14 | 83.0 | 50.0 | 15 | 87.4 | 50.5 | 14 | 86.3 | 50.1 |
3. Topographic wetness index | 17 | 84.9 | 50.0 | 16 | 83.4 | 50.0 | 17 | 88.5 | 50.5 | 15 | 86.4 | 50.1 |
4. Soil granulometric composition | 6 | 76.6 | 51.8 | 2 | 74.8 | 50.0 | 3 | 73.5 | 50.5 | 7 | 85.1 | 50.1 |
5. Soil productivity score | 14 | 84.4 | 50.0 | 17 | 83.7 | 50.0 | 12 | 85.6 | 50.5 | 13 | 86.2 | 50.1 |
6. Density of underground drainage network | 9 | 80.0 | 52.2 | 5 | 80.5 | 57.4 | 4 | 77.4 | 50.5 | 4 | 83.8 | 63.3 |
7. Distance to drainage network element | 2 | 70.2 | 50.0 | 8 | 80.8 | 50.0 | 6 | 77.7 | 50.5 | 9 | 85.6 | 50.1 |
8. Distance to built-up block | 8 | 80.0 | 59.3 | 9 | 82.2 | 50.0 | 7 | 79.5 | 50.5 | 8 | 85.3 | 50.1 |
9. Distance to road or railroad | 16 | 84.8 | 51.0 | 10 | 82.8 | 50.0 | 13 | 86.7 | 50.5 | 11 | 86.0 | 50.1 |
10. Distance to water stream | 10 | 80.8 | 58.6 | 15 | 83.2 | 49.0 | 5 | 77.6 | 50.5 | 17 | 86.4 | 50.1 |
11. Distance to areal water body | 7 | 76.7 | 56.3 | 11 | 82.9 | 49.8 | 9 | 81.7 | 50.5 | 12 | 86.1 | 50.1 |
12. Distance to agricultural block | 4 | 74.6 | 44.7 | 3 | 75.6 | 50.9 | 1 | 57.1 | 60.0 | 2 | 77.4 | 50.9 |
13. Distance to agricultural block with no crops declared | 3 | 72.9 | 41.5 | 4 | 79.6 | 50.0 | 2 | 69.3 | 50.4 | 6 | 85.1 | 54.0 |
14. Distance to unused land block | 1 | 62.7 | 41.2 | 7 | 80.7 | 50.0 | 8 | 81.3 | 50.5 | 3 | 83.4 | 52.1 |
15. Distance to forest land | 15 | 84.8 | 50.0 | 1 | 67.5 | 57.1 | 16 | 87.5 | 50.5 | 1 | 70.7 | 76.9 |
16. Type of landscape use | 12 | 84.0 | 50.0 | 12 | 82.9 | 50.0 | 10 | 83.0 | 50.5 | 10 | 85.8 | 50.1 |
17. Degree of landscape culturalization | 11 | 82.1 | 50.0 | 13 | 83.0 | 50.0 | 14 | 86.7 | 50.5 | 16 | 86.4 | 50.1 |
With all variables | - | 85.0 | - | 83.8 | - | 88.5 | - | 86.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juknelienė, D.; Narmontienė, V.; Valčiukienė, J.; Mozgeris, G. Driving Forces of Agricultural Land Abandonment: A Lithuanian Case. Land 2025, 14, 899. https://doi.org/10.3390/land14040899
Juknelienė D, Narmontienė V, Valčiukienė J, Mozgeris G. Driving Forces of Agricultural Land Abandonment: A Lithuanian Case. Land. 2025; 14(4):899. https://doi.org/10.3390/land14040899
Chicago/Turabian StyleJuknelienė, Daiva, Viktorija Narmontienė, Jolanta Valčiukienė, and Gintautas Mozgeris. 2025. "Driving Forces of Agricultural Land Abandonment: A Lithuanian Case" Land 14, no. 4: 899. https://doi.org/10.3390/land14040899
APA StyleJuknelienė, D., Narmontienė, V., Valčiukienė, J., & Mozgeris, G. (2025). Driving Forces of Agricultural Land Abandonment: A Lithuanian Case. Land, 14(4), 899. https://doi.org/10.3390/land14040899