Green Infrastructure for Urban Flooding: Knowledge Domains and Research Evolution (2015–2024)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methodology
3. Results
3.1. Literature Overview
3.2. Clustering and Burst Analysis
3.2.1. Co-Citation Analysis of the Literature
3.2.2. Citation Burst Analysis
3.2.3. Citation Clustering Analysis
3.2.4. Keyword Connection Network
3.2.5. Keyword Burst Analysis
3.3. In-Depth Analysis
Full-Text Analysis of the Literature
4. Discussion
4.1. Comparative Analysis with the Existing Literature
4.2. Analytical Innovations: Bibliometric Analysis and Computational Approaches
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Art | Articles |
BMPs | Best Management Practices |
DT | Data Type |
GI | Green Infrastructure |
LA | Language |
LLR | Log Likelihood Ratio |
LSI | Latent Semantic Indexing |
TC | Total Citations |
QMTS | Quotations Matching Topic Search |
Wos | Web of Science |
References
- Dharmarathne, G.; Waduge, A.O.; Bogahawaththa, M.; Rathnayake, U.; Meddage, D.P.P. Adapting cities to the surge: A comprehensive review of climate-induced urban flooding. Results Eng. 2024, 22, 102123. [Google Scholar] [CrossRef]
- Rosenzweig, B.R.; McPhillips, L.; Chang, H.; Cheng, C.; Welty, C.; Matsler, M.; Iwaniec, D.; Davidson, C.I. Pluvial flood risk and opportunities for resilience. WIREs Water 2018, 5, e1302. [Google Scholar] [CrossRef]
- Han, J.; Wang, C.; Deng, S.; Lichtfouse, E. China’s sponge cities alleviate urban flooding and water shortage: A review. Environ. Chem. Lett. 2023, 21, 1297–1314. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; McCuskey, D.J.; McDonald, R.I.; Miller, W.M.; Young, S.L. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef]
- Ariyarathna, I.S.; Abeyrathna, W.P.; Jamei, E.; Chau, H.-W. A Review of the Application of Blue–Green Infrastructure (BGI) as an Effective Urban Flood Mitigation Strategy for Livable and Healthy Cities in Australia. Architecture 2023, 3, 461–476. [Google Scholar] [CrossRef]
- Korkou, M.; Tarigan, A.K.M.; Hanslin, H.M. The multifunctionality concept in urban green infrastructure planning: A systematic literature review. Urban For. Urban Green. 2023, 85, 127975. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.; Zhang, D. Opportunities and challenges in green stormwater infrastructure (GSI): A comprehensive and bibliometric review of ecosystem services from 2000 to 2021. Environ. Res. 2023, 236, 116701. [Google Scholar] [CrossRef]
- Bedla, D.; Halecki, W. The value of river valleys for restoring landscape features and the continuity of urban ecosystem functions—A review. Ecol. Indic. 2021, 129, 107871. [Google Scholar] [CrossRef]
- Huang, L. A systematic review of planning principles for green infrastructure in response to urban stormwater management. Landsc. Res. 2023, 49, 287–300. [Google Scholar] [CrossRef]
- Valencia-Félix, S.; Anco-Valdivia, J.; Espinoza Vigil, A.J.; Hidalgo Valdivia, A.V.; Sanchez-Carigga, C. Review of Green Water Systems for Urban Flood Resilience: Literature and Codes. Water 2024, 16, 2908. [Google Scholar] [CrossRef]
- Esraz-Ul-Zannat, M.; Dedekorkut-Howes, A.; Morgan, E.A. A review of nature-based infrastructures and their effectiveness for urban flood risk mitigation. WIREs Clim. Change 2024, 15, e889. [Google Scholar] [CrossRef]
- Herath, H.M.M.S.D.; Fujino, T.; Senavirathna, M.D.H.J. A Review of Emerging Scientific Discussions on Green Infrastructure (GI)-Prospects towards Effective Use of Urban Flood Plains. Sustainability 2023, 15, 1227. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Lopez, D.; McCuskey, D.J.; Kiefus, D.; McDonald, R.I.; Miller, W.M.; Packman, A.I.; Young, S.L. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review. Sci. Total Environ. 2020, 720, 137606. [Google Scholar] [CrossRef] [PubMed]
- Abuismail, S.; Sun, Q.; Yang, Y.C.E. Exploring the influential factors of residents’ attitudes toward implementing green infrastructures for stormwater management in the US. Sustain. Cities Soc. 2024, 100, 105067. [Google Scholar] [CrossRef]
- Reu Junqueira, J.; Serrao-Neumann, S.; White, I. A systematic review of approaches for modelling current and future impacts of extreme rainfall events using green infrastructure. J. Clean. Prod. 2021, 290, 125173. [Google Scholar] [CrossRef]
- Sheng, B.; Ozgun, K.; Satherley, S.; Cushing, D.F. Landscape planning for sustainable water management: A systematic review of green infrastructure literature in the Australian context. Landsc. Res. 2022, 48, 134–151. [Google Scholar] [CrossRef]
- Williams, R.; Bornmann, L. Sampling issues in bibliometric analysis. J. Informetr. 2016, 10, 1225–1232. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric Methods: Pitfalls and Possibilities. Basic Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef]
- Stuart, D. Open bibliometrics and undiscovered public knowledge. Online Inf. Rev. 2018, 42, 412–418. [Google Scholar] [CrossRef]
- Yang, K.; Meho, L. CiteSearch. In Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, Vancouver, BC, Canada, 18–23 June 2007; pp. 101–102. [Google Scholar] [CrossRef]
- José de Oliveira, O.; Francisco da Silva, F.; Juliani, F.; César Ferreira Motta Barbosa, L.; Vieira Nunhes, T. Bibliometric Method for Mapping the State-of-the-Art and Identifying Research Gaps and Trends in Literature: An Essential Instrument to Support the Development of Scientific Projects. In Scientometrics Recent Advances; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Haustein, S.; Larivière, V. The Use of Bibliometrics for Assessing Research: Possibilities, Limitations and Adverse Effects. In Incentives and Performance; Springer: Cham, Switzerland, 2014; pp. 121–139. [Google Scholar] [CrossRef]
- Abdullah, K.H.; Roslan, M.F.; Ishak, N.S.; Ilias, M.; Dani, R. Unearthing hidden research opportunities through bibliometric analysis: A review. Asian J. Res. Educ. Soc. Sci. 2023, 5, 251–262. [Google Scholar] [CrossRef]
- Yan, L.; Zhiping, W. Mapping the Literature on Academic Publishing: A Bibliometric Analysis on WOS. Sage Open 2023, 13, 21582440231158562. [Google Scholar] [CrossRef]
- Özden, B. A Bibliometric Analysis of Articles on “Scientific Inquiry”: Sample of WoS Database. Celal Bayar Üniversitesi Sosyal Bilimler Dergisi 2024, 22, 78–101. [Google Scholar] [CrossRef]
- Dubey, P.; Dubey, P.; Agrawal, P.K.; Chourasia, H.; Nayak, M.; Gehani, H. Bibliometric Analysis of Data Science Research: A Decade of Insights from Web of Science. In Proceedings of the 2023 Fourth International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 8–9 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Vlase, I.; Lähdesmäki, T. A bibliometric analysis of cultural heritage research in the humanities: The Web of Science as a tool of knowledge management. Humanit. Soc. Sci. Commun. 2023, 10, 84. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2005, 57, 359–377. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Takeda, Y.; Matsushima, K. Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 2008, 28, 758–775. [Google Scholar] [CrossRef]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef]
- Wang, L.; Xue, X. Exploring the Evolution Trends of Urban Resilience Research. ICCREM 2018, 2018, 18–27. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric Analysis on Smart Cities Research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef]
- Hong, R.; Xiang, C.; Liu, H.; Glowacz, A.; Pan, W. Visualizing the Knowledge Structure and Research Evolution of Infrared Detection Technology Studies. Information 2019, 10, 227. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Long, H. A Comparative Study of Chinese and Foreign Green Development from the Perspective of Mapping Knowledge Domains. Sustainability 2018, 10, 4357. [Google Scholar] [CrossRef]
- Hansen, R.; Pauleit, S. From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. AMBIO 2014, 43, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Jayasooriya, V.M.; Ng, A.W.M. Tools for Modeling of Stormwater Management and Economics of Green Infrastructure Practices: A Review. Water Air Soil Pollut. 2014, 225, 2055. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Fratini, C.F.; Geldof, G.D.; Kluck, J.; Mikkelsen, P.S. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality. Urban Water J. 2012, 9, 317–331. [Google Scholar] [CrossRef]
- Lee, J.G.; Selvakumar, A.; Alvi, K.; Riverson, J.; Zhen, J.X.; Shoemaker, L.; Lai, F. A watershed-scale design optimization model for stormwater best management practices. Environ. Model. Softw. 2012, 37, 6–18. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.0. United States Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory. 2010. Available online: http://54.243.252.9/ce-3372-webroot/3-Readings/epaswmm5_user_manual/P100ERK4.pdf (accessed on 14 January 2025).
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Bendict, M.; McMahon, E. Green Infrastructure. Linking Landscape and Communities; The Conservations Fund: Arlington, VA, USA, 2006. [Google Scholar]
- Lee, J.Y. A proposal on modified g-index for evaluating research performance. J. Korean Soc. Inf. Manag. 2017, 34, 209–228. [Google Scholar] [CrossRef]
- Elliott, A.; Trowsdale, S. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Lawson, E.; Thorne, C.; Ahilan, S.; Allen, D.; Arthur, S.; Everett, G.; Fenner, R.; Glenis, V.; Guan, D.; Hoang, L.; et al. Delivering and evaluating the multiple flood risk benefits in Blue-Green Cities: An interdisciplinary approach. Flood Recovery Innov. Response IV 2014, 1, 113–124. [Google Scholar] [CrossRef]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Chen, Y.; Jia, H.; Wang, Q.; Chen, Z.; Xu, C.; Li, Q.; Wang, W.; Yang, Y.; Fu, G.; et al. Sponge city practice in China: A review of construction, assessment, operational and maintenance. J. Clean. Prod. 2021, 280, 124963. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- Dong, X.; Guo, H.; Zeng, S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Res. 2017, 124, 280–289. [Google Scholar] [CrossRef]
- Schubert, J.E.; Burns, M.J.; Fletcher, T.D.; Sanders, B.F. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards. Adv. Water Resour. 2017, 108, 55–68. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual Version 5.1. United States Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory. 2015. Available online: https://www.epa.gov/sites/default/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (accessed on 14 January 2025).
- Palla, A.; Gnecco, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
Metric Category | Value | Additional Context |
---|---|---|
Time Span | 2015–2024 | Decade of analysis |
Number of Sources | 214 | Journals and other publication venues |
Documents | 813 | Total publications analyzed |
Annual Growth Rate | 32.59% | Compound annual publication growth |
Total Authors | 2922 | Unique contributing scholars |
Single-Authored Documents | 41 | Publications with one author |
International Co-Authorship | 33.83% | Percentage of multi-country collaborations |
Average Co-Authors per Document | 4.33 | Mean number of authors per publication |
Authors’ Keywords | 2259 | Unique author-assigned keywords |
References | 35,707 | Total citations in all publications |
Document Average Age Average Citations per Document | 3.9 years 22.55 | Mean age of publications in dataset Mean citation frequency |
Year | MeanTCperArt 1 | No. of Articles | MeanTCperYear 2 | Citable Years |
---|---|---|---|---|
2015 | 89.42 | 12 | 8.13 | 11 |
2016 | 66.05 | 19 | 6.60 | 10 |
2017 | 70.50 | 38 | 7.83 | 9 |
2018 | 48.40 | 65 | 6.05 | 8 |
2019 | 35.40 | 73 | 5.06 | 7 |
2020 | 29.47 | 83 | 4.91 | 6 |
2021 | 20.81 | 124 | 4.16 | 5 |
2022 | 11.06 | 124 | 2.77 | 4 |
2023 | 7.59 | 123 | 2.53 | 3 |
2024 | 1.76 | 152 | 0.88 | 2 |
No. | Country | Counts | Year of Appearance | Percentage |
---|---|---|---|---|
1 | USA | 472 | 2015 | 19.42% |
2 | CHINA | 449 | 2015 | 18.48% |
3 | UK | 221 | 2015 | 9.09% |
4 | AUSTRALIA | 103 | 2015 | 4.24% |
5 | BRAZIL | 93 | 2015 | 3.83% |
6 | ITALY | 93 | 2016 | 3.83% |
7 | GERMANY | 85 | 2016 | 3.50% |
8 | SOUTH KOREA | 85 | 2016 | 3.50% |
9 | NETHERLANDS | 72 | 2015 | 2.96% |
10 | JAPAN | 59 | 2017 | 2.43% |
No. | Title | Sources | Authors | Year | Co- Citations |
---|---|---|---|---|---|
1 | SUDS, LID, BMPs, WSUD and more– The evolution and application of terminology surrounding urban drainage | Urban Water Journal | Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.-L., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., and Viklander, M. | 2015 | 137 |
2 | Enhancing future resilience in urban drainage system: Green versus grey infrastructure | Water Research | Dong, X., Guo, H., and Zeng, S. | 2017 | 60 |
3 | Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit | Landscape and Urban Planning | Meerow, S., and Newell, J. P. | 2017 | 58 |
4 | Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed | Science of The Total Environment | Mei, C., Liu, J., Wang, H., Yang, Z., Ding, X., and Shao, W. | 2018 | 58 |
5 | Performance and implementation of low impact development–A review | Science of The Total Environment | Eckart, K., McPhee, Z., and Bolisetti, T. | 2017 | 53 |
6 | Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management | Journal of Environmental Management | Alves, A., Gersonius, B., Kapelan, Z., Vojinovic, Z., and Sanchez, A. | 2019 | 53 |
7 | The effects of low impact development on urban flooding under different rainfall characteristics | Journal of Environmental Management | Qin, H., Li, Z., and Fu, G. | 2013 | 51 |
8 | Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review | Landscape and Urban Planning | Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., and James, P. | 2007 | 49 |
9 | Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions | Water, Air, and Soil Pollution | Dietz, M. E. | 2007 | 48 |
10 | “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context | Land Use Policy | Chan, F. K. S., Griffiths, J. A., Higgitt, D., Xu, S., Zhu, F., Tang, Y.-T., Xu, Y., and Thorne, C. R. | 2018 | 46 |
No. | Keywords | Frequency | No. | Keywords | Frequency |
---|---|---|---|---|---|
1 | Green infrastructure | 330 | 26 | Blue–green infrastructure | 45 |
2 | Climate change | 177 | 27 | Impacts | 44 |
3 | Management | 153 | 28 | Benefits | 43 |
4 | Ecosystem services | 133 | 29 | Urban planning | 43 |
5 | Low-impact development | 113 | 30 | Stormwater | 42 |
6 | Stormwater management | 112 | 31 | Urban flooding | 42 |
7 | City | 97 | 32 | Green | 35 |
8 | Runoff | 89 | 33 | Mitigation | 33 |
9 | Performance | 84 | 34 | Challenges | 32 |
10 | Urbanization | 79 | 35 | Climate change adaptation | 32 |
11 | Impact | 77 | 36 | Quality | 31 |
12 | Framework | 76 | 37 | Water quality | 30 |
13 | Infrastructure | 76 | 38 | Strategy | 28 |
14 | Urban | 74 | 39 | Policy | 27 |
15 | Model | 68 | 40 | Governance | 26 |
16 | Nature-based solutions | 66 | 41 | Biodiversity | 26 |
17 | Design | 64 | 42 | Flood mitigation | 26 |
18 | Water | 58 | 43 | Land use | 25 |
19 | Flood risk | 57 | 44 | Landscape | 24 |
20 | Systems | 57 | 45 | Climate-change | 24 |
21 | Resilience | 55 | 46 | System | 23 |
22 | Sponge city | 54 | 47 | Optimization | 22 |
23 | Risk | 51 | 48 | Vulnerability | 22 |
24 | Water management | 48 | 49 | Rainfall | 21 |
25 | Adaptation | 48 | 50 | Health | 19 |
No. | Keywords | Frequency | No. | Keywords | Frequency |
---|---|---|---|---|---|
1 | Urban | 60,340 | 26 | System | 10,702 |
2 | Water | 43,974 | 27 | Drainage | 10,591 |
3 | Green | 37,259 | 28 | Community | 10,356 |
4 | Flood | 29,602 | 29 | Different * | 10,226 |
5 | Infrastructure | 20,850 | 30 | Benefits | 9683 |
6 | Area | 20,622 | 31 | Results | 9418 |
7 | Management | 19,032 | 32 | Resilience | 8548 |
8 | Study | 18,987 | 33 | Impact | 8239 |
9 | City | 18,222 | 34 | Surface | 8182 |
10 | Climate | 17,504 | 35 | Reduction | 8105 |
11 | Stormwater | 16,712 | 36 | Flow | 7821 |
12 | Runoff | 16,696 | 37 | Spatial | 7667 |
13 | Land | 15,759 | 38 | Soil | 7385 |
14 | Change | 15,307 | 39 | Ecosystem | 7307 |
15 | Model | 14,609 | 40 | Approach | 7195 |
16 | Data | 13,750 | 41 | River | 7152 |
17 | Rainfall | 13,252 | 42 | Local | 7109 |
18 | Risk | 13,202 | 43 | Level | 7083 |
19 | Planning | 12,518 | 44 | Natural | 7003 |
20 | Development | 11,969 | 45 | Public | 7000 |
21 | Flooding | 11,899 | 46 | Solutions | 6936 |
22 | Analysis | 11,495 | 47 | Events | 6923 |
23 | Environmental | 11,365 | 48 | Cost | 6886 |
24 | Research | 10,980 | 49 | Services | 6868 |
25 | Design | 10,875 | 50 | Sustainable | 6767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-P.; Kim, J.-O. Green Infrastructure for Urban Flooding: Knowledge Domains and Research Evolution (2015–2024). Land 2025, 14, 921. https://doi.org/10.3390/land14050921
Kim J-P, Kim J-O. Green Infrastructure for Urban Flooding: Knowledge Domains and Research Evolution (2015–2024). Land. 2025; 14(5):921. https://doi.org/10.3390/land14050921
Chicago/Turabian StyleKim, Jin-Pyo, and Jin-Oh Kim. 2025. "Green Infrastructure for Urban Flooding: Knowledge Domains and Research Evolution (2015–2024)" Land 14, no. 5: 921. https://doi.org/10.3390/land14050921
APA StyleKim, J.-P., & Kim, J.-O. (2025). Green Infrastructure for Urban Flooding: Knowledge Domains and Research Evolution (2015–2024). Land, 14(5), 921. https://doi.org/10.3390/land14050921