Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level Based on Ring-Layer and Direction Model: A Case Study of Shenzhen, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.1.1. Study Area
2.1.2. Dataset
2.2. Theoretical Framework
2.3. Methods
2.3.1. Grid Refinement
2.3.2. Spatial Interpolation
2.3.3. Ring-Layer and Direction Analysis
3. Results and Analysis
3.1. Spatial Analysis of CO2 in Shenzhen Based on Reconstructed Data
3.1.1. Overall Characteristics of CO2 Emission Intensity in Shenzhen
3.1.2. Analysis of CO2 Distribution Characteristics in the Western Region of Shenzhen
3.1.3. Analysis of CO2 Distribution Characteristics in the Eastern Region of Shenzhen
3.2. High Pollution Areas and Analysis of CO2 Absorption in the Surrounding Area
3.2.1. Construction of High-Value Zone Layers
3.2.2. Analysis of CO2 Changes in the Nanshan High-Value Area
3.2.3. Analysis of CO2 Changes in the Kuiyong High-Value Area
3.3. Analysis of Factors Affecting CO2 Emission Intensity in Areas with High Pollution Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Meteorological Organization (WMO). Greenhouse Gas Bulletin (GHG Bulletin)—No. 17: The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2023. Available online: https://library.wmo.int/ (accessed on 24 July 2025).
- Zhou, C.S.; Wang, S.J.; Wang, J.Y. Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Sci. Total Environ. 2019, 675, 472–482. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Muneer, T.; Celik, A.N.; Caliskan, N. Sustainable transport solution for a medium-sized town in Turkey—A case study. Sustain. Cities Soc. 2011, 1, 29–37. [Google Scholar] [CrossRef]
- Zhang, G.; Chang, F.; Liu, J. Carbon emission prediction of 275 cities in China considering artificial intelligence effects and feature interaction: A heterogeneous deep learning modeling framework. Sustain. Cities Soc. 2024, 114, 105776. [Google Scholar] [CrossRef]
- Liu, M.; Yu, Y.; Zhang, M.; Wang, P.; Shi, N.; Ren, Y.; Zhang, D. Carbon Balance Matching Relationships and Spatiotemporal Evolution Patterns in China’s National-Level Metropolitan Areas. Land 2025, 14, 800. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, K.R.; Chen, Z.F. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Y.; Liu, Y. Spatiotemporal evolution of carbon emission intensity and the driving effect of green technology innovation: Evidence from China. Environ. Sci. Pollut. Res. Int. 2023, 46, 103087–103100. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shen, W.; Su, Y. Research on the Dynamic Evolution and Driving Factors of China’s CarbonEmission Reduction Pathway. Res. Environ. Sci. 2025, 38, 957–966. [Google Scholar]
- Yang, S.; Zhang, Y.; Geng, Y. An LMDI-based investigation of the changes in carbon emissions of the transportation sector in the Yangtze River Economic Belt. China Environ. Sci. 2022, 42, 4817–4826. [Google Scholar]
- Feng, D.; Li, C.; Deng, S. Study on the Decoupling Effect and Driving Factors of Tourism Transportation Carbon Emissions in the Yangtze River Delta Region. Sustainability 2025, 7, 3056. [Google Scholar] [CrossRef]
- Ding, R.; Tian, D.; Wei, Y. Driving Factors and Decoupling Effect of Energy-Related Carbon Emissions in Beijing, 2013–2020. Sustainability 2025, 9, 3940. [Google Scholar] [CrossRef]
- Li, J.; Pei, X.; Yang, G. Decoupling relationship and driving effect between livestock carbon emissions and economic efficiency in Qinghai Province. Acta Ecol. Sin. 2024, 44, 10146–10161. [Google Scholar]
- Ding, H.; Wu, X.; Guo, Y.; Liu, C. Carbon emissions in the logistics industry: Driving factors and decoupling effects. Environ. Sci. Pollut. Res. 2024, 17, 25721–25735. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, J.Y.; Fang, C.L.; Li, S. Estimating the impacts of urban form on CO2 emission efficiency in the Pearl River Delta, China. Cities 2019, 85, 117–129. [Google Scholar] [CrossRef]
- Lu, T.Y.; Zeng, C.; Liu, Z.J.; Yang, J. Driving factors and spillover effects of CO2 emissions from the perspective of spatial interaction: A case study of 98 countries worldwide. Acta Ecol. Sin. 2020, 40, 8974–8987. [Google Scholar]
- Shi, K.F.; Xu, T.; Li, Y.Q.; Chen, Z.Q.; Gong, W.K.; Wu, J.P.; Yu, B.L. Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Sun, P.; Wei, G. Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration. Land 2022, 10, 1858. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, Y.; Wang, P. Driving effects of urbanization on city-level carbon dioxide emissions: From multiple perspectives of urbanization. Int. J. Urban Sci. 2020, 1, 108–128. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.L.; Li, R.R. Renewable energy and economic growth revisited: The dual roles of resource dependence and anticorruption regulation. J. Clean. Prod. 2022, 337, 130514. [Google Scholar] [CrossRef]
- Al-Mulali, U. Factors affecting CO2 emission in the Middle East: A panel data analysis. Energy 2012, 44, 564–569. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, N.; Li, F. Research on the driving effect of urbanization on carbon emission in typical fields Research on the driving effect of urbanization on carbon emission in typical fields. Acta Sci. Circumst. 2021, 4, 2951–2958. [Google Scholar]
- Henderson, J.V.; Nigmatulina, D.; Kriticos, S. Measuring urban economic density. J. Urban Econ. 2018, 125, 103188. [Google Scholar] [CrossRef]
- Ouyang, X.; Lin, B.Q. Carbon dioxide (CO2) emissions during urbanization: A comparative study between China and Japan. J. Clean. Prod. 2017, 143, 356–368. [Google Scholar] [CrossRef]
- Han, X.Y.; Cao, T.Y.; Sun, T. Analysis on the variation rule and influencing factors of energy consumption carbon emission intensity in China’s urbanization construction. J. Clean. Prod. 2019, 238, 117958. [Google Scholar] [CrossRef]
- Yao, X.L.; Kou, D.; Shao, S.; Li, X.Y.; Wang, W.X.; Zhang, C.T. Can urbanization process and carbon emission abatement be harmonious? New evidence from China. Environ. Impact Assess. Rev. 2018, 71, 70–83. [Google Scholar] [CrossRef]
- Envelope, A.; Envelope, M.; Envelope, A.; Envelope, J. Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technol. Soc. 2022, 71, 102128. [Google Scholar] [CrossRef]
- Yang, T.L.; Dong, Q.Y.; Du, Q.Y.; Du, M.; Dong, R.; Chen, M. Carbon dioxide emissions and Chinese OFDI: From the perspective of carbon neutrality targets and environmental management of home country. J. Environ. Manag. 2021, 295, 113120. [Google Scholar] [CrossRef] [PubMed]
- Algieri, B.; Fug, O.; Lombardo, R. The Italian Journey: Carbon dioxide emissions, the role of tourism and other economic and climate drivers. J. Clean. Prod. 2022, 375, 134144. [Google Scholar] [CrossRef]
- Liu, H.L.; Nie, J.X.; Cai, B.F.; Cao, L.B.; Wu, P.C.; Pang, L.Y.; Wang, X.Q. CO2 emissions patterns of 26 cities in the Yangtze River Delta in 2015: Evidence and implications. Environ. Pollut. 2019, 252, 1678–1686. [Google Scholar] [CrossRef]
- Zeng, C.; Li, T.; He, B. Decoupling effect and driving decomposition of land use intensity on carbon emissions in southwest alpine canyou area. Acta Ecol. Sin. 2025, 14, 6770–6782. [Google Scholar]
- Cui, Y.F.; Li, L.; Chen, L.Q.; Zhang, Y.; Chen, L.; Zhou, X.S.; Yang, X.Y. Land-use carbon emissions estimation for the Yangtze River Delta urban agglomeration using 1994–2016 landsat image data. Remote Sens. 2018, 10, 1334. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.X.; Tang, Z.P.; Zhao, M. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- European Commission Joint Research Centre (JRC); (PBL) Netherlands Environmental Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR); European Commission: Brussels, Belgium, 2013.
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories, Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Geneva, Switzerland, 2016.
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Petrescu, A. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef]
- Oreggioni, G.D.; Ferraio, F.M.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Guizzardi, D.; Solazzo, E.; Duerr, M.; Perry, M.; et al. Climate change in a changing world: Socio-economic and technological transitions, regulatory frameworks and trends on global greenhouse gas emissions from EDGAR v.5.0. Glob. Environ. Change 2021, 70, 102350. [Google Scholar] [CrossRef]
- Alonso, M.F.; Longo, K.M.; Freitas, S.R.; Fonseca, R.M.D.; Marecal, V.; Pirre, M.; Klenner, L.G. An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmos. Environ. 2010, 44, 5072–5083. [Google Scholar] [CrossRef]
- Gurney, K.R.; Mendoza, D.L.; Zhou, Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 2009, 43, 5535–5541. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.F.; Liang, S.; Zhou, J.; Wang, J.N.; Cao, L.B.; Qu, S.; Xu, M.; Yang, Z.F. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resour. Conserv. Recycl. 2018, 129, 232–239. [Google Scholar] [CrossRef]
- GOSAT. GOSAT: Greenhouse Gases Observing Satellite; National Institute for Environmental Studies: Tsukuba-shi, Japan, 2017. Available online: http://www.gosat.nies.go.jp/en (accessed on 9 January 2023).
- NASA. Orbiting Carbon Observatory 2. National Aeronautics and Space Administration 2017. Available online: https://www.federalregister.gov/index/2017/national-aeronautics-and-space-administration (accessed on 11 January 2023).
- eoPortal. TanSat (Chinese Carbon Dioxide Observation Satellite Mission). eoPortal 2017. Available online: https://directory.eoportal.org/satellite-missions/tansat (accessed on 11 January 2023).
- Issa Zadeh, S.B.; López Gutiérrez, J.S.; Esteban, M.D.; Fernández-Sánchez, G.; Garay-Rondero, C.L. A Framework for Accurate Carbon Footprint Calculation in Seaports: Methodology Proposal. J. Mar. Sci. Eng. 2023, 11, 1007. [Google Scholar] [CrossRef]
- Fang, X.; Ding, L.; Gao, M. Carbon Emissions and Innovation Cities: A SHAP-Model-Based Study on Decoupling Trends and Policy Implications in Coastal China. Sustainability 2025, 17, 3344. [Google Scholar] [CrossRef]
- IEA. Global Energy Review 2025; IEA: Paris, France, 2025; Available online: https://www.iea.org/reports/global-energy-review-2025 (accessed on 13 August 2025).
- Liu, S.R.; Shi, K.F.; Wu, Y.Z.; Chang, Z.J. Remotely sensed nighttime lights reveal China’s urbanization process restricted by haze pollution. Build. Environ. 2021, 206, 108350. [Google Scholar] [CrossRef]
- Mi, Z.F.; Meng, J.; Guan, D.B.; Shan, Y.; Song, M.; Wei, Y.M.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 2018, 8, 1712. [Google Scholar] [CrossRef]
- Wang, S.J.; Huang, Y.Y.; Zhou, Y.Q. Spatial spillover effect and driving forces of carbon emission intensity at city level in China. J. Geogr. Sci. 2019, 29, 231–252. [Google Scholar] [CrossRef]
- EDGAR. EDGAR—Emissions Database for Global Atmospheric Research. Joint Research Centre, European Commission 2016. Available online: https://edgar.jrc.ec.europa.eu/ (accessed on 14 January 2023).
- ORNL. Fossil-Fuel CO2 Emissions. Oak Ridge National Laboratory, U.S. Department of Energy 2017. Available online: https://www.energy.gov/ea/oak-ridge-national-laboratory (accessed on 16 January 2023).
- Yuan, Y.; Xu, P.; Zhang, H. Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China. Int. J. Environ. Res. Public Health 2023, 5, 4023. [Google Scholar] [CrossRef]
- Shenzhen Bureau of Statistics. Shenzhen Seventh National Population Census Bulletin (No. 1) [DB/OL]. Available online: https://tjj.sz.gov.cn/ztzl/zt/szsdqcqgrkpc/index.html (accessed on 17 May 2021).
- Shenzhen Bureau of Statistics. Shenzhen Statistical Yearbook—2024; Shenzhen Bureau of Statistics: Shenzhen, China, 2024.
- Wang, J.N.; Cai, B.F.; Zhang, L.X.; Cao, D.; Liu, L.C.; Zhou, Y.; Zhang, Z.S.; Xue, W.B. High resolution carbon dioxide emission gridded data for China derived from point sources. Environ. Sci. Technol. 2014, 48, 7085–7093. [Google Scholar] [CrossRef]
- Cai, B.F.; Wang, J.N.; He, J.; Geng, Y. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Appl. Energy 2016, 166, 191–200. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Wang, S.J.; Zhang, W.Z.; Li, J.M.; Kong, Y.L. Examining the effects of income inequality on CO2 emissions: Evidence from nonspatial and spatial perspectives. Appl. Energy 2019, 236, 163–171. [Google Scholar] [CrossRef]
- Zuo, S.D.; Dai, S.Q.; Ren, Y. More fragmentized urban form more CO2 emissions? A comprehensive relationship from the combination analysis across different scales. J. Clean. Prod. 2020, 244, 118659. [Google Scholar] [CrossRef]
- Ai, T.H.; Zhang, X. An interpretation and representation of scale concept in geo-information sciences. Acta Geod. Cartogr. Sin. 2022, 51, 1640–1652. [Google Scholar]
- Shenzhen Municipal Bureau of Ecology and Environment. Notice of the Shenzhen Municipal Bureau of Ecology and Environment on the Issuance of the Implementation Plan for Carbon Trading Support for Carbon Peaking and Carbon Neutrality in Shenzhen; Shenzhen Municipal Bureau of Ecology and Environment: Shenzhen, China, 2023.
- Notice of the Shenzhen Municipal Bureau of Ecology and Environment and the Shenzhen Municipal Development and Reform Commission on the Issuance of the “Shenzhen Municipal Plan for Responding to Climate Change during the 14th Five-Year Plan Period”. Shenzhen Munic. Gov. Gaz. 2022, 38, 6–36.
- Jing, W.; Shan, L.; Sima, X.; Liu, Y. Exploring the Full-Process Implementation Mechanism for Urban Public Green Space Planning: The Case Study of “Shenzhen Mountain-Sea Vistas”. Urban Plan. Forum 2025. [Google Scholar] [CrossRef]
- Lu, H. Review on transit-oriented development. Sci. Technol. Rev. 2023, 41, 5–11. [Google Scholar]
- He, C.; Wang, X.; Zou, B. From “Mutual Promotion of Industry and City” to “Industry-City Integration”: The Approach and Methods of Industrial Layout Planning in Shenzhen. Urban Plan. Forum 2012, 5, 30–36. [Google Scholar]
- Dou, Y. Shenzhen’s Innovative Development of Carbon Finance Promotes Green Development. Shenzhen Special Zone Daily. Available online: https://www.sz.gov.cn/cn/xxgk/zfxxgj/zwdt/content/post_12082508.html (accessed on 21 March 2025).
- Chen, J.; Wu, J.; Zhou, G. Development Recommendations for the Hydrogen Energy Industry in the Guangdong-Hong Kong-Macao Greater Bay Area Based on SWOT Analysis and the Analytic Hierarchy Process. Power Gener. Technol. 2025. Available online: https://link.cnki.net/urlid/33.1405.TK.20250303.1641.002 (accessed on 22 August 2025).
- Chang, Q. Guangdong takes the lead in launching mutual recognition of carbon labels between Guangdong and Hong Kong. Environment 2025, 3, 56–58. [Google Scholar]
- Qu, Y.B.; Wang, S.L.; Tian, Y.Y.; Jiang, G.H.; Zhou, T.; Meng, L. Territorial spatial planning for regional high-quality development—An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the YellowRiver Delta. Land Use Policy 2023, 125, 106462. [Google Scholar]
- Sapkota, Y.; White, J.R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the United States: A review. Sci. Total Environ. 2020, 701, 134497. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Sun, Y.F. The dynamic volatility spillover between European carbon trading market and fossil energy market. J. Clean. Prod. 2016, 112, 2654–2663. [Google Scholar] [CrossRef]
- He, K.; Li, F.L.; Wang, H.; Ming, R.Y.; Zhang, J.B.; Affiliations, A.I. A low-carbon future for China’s tech industry. Science 2022, 377, 1498–1499. [Google Scholar] [CrossRef]
Data Type | Name | Source |
---|---|---|
Carbon emissions data | China high resolution emission database | CHRED |
Night-time light (NTL) data | National NPP-VIIRS satellite night-time light remote sensing image | RESDC |
Land-use data | NDVI gridded data of China | |
Land-use vector data for China | ||
Socioeconomic data | Population gridded data for China |
Number | Interpolation Methods | R with Original CO2 Value |
---|---|---|
1 | Krige | 0.413 ** |
2 | Natural neighbor | 0.918 ** |
3 | IDW | 0.909 ** |
4 | The average of the three methods | 0.900 ** |
5 | The average of natural neighbor plus IDW | 0.920 ** |
CO2 Emissions Intensity (10 kt) | Entire Range | Shenzhen City | |||
---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | ||
Low intensity | 0.00~0.50 | 1817 | 40.26 | 739 | 31.88 |
0.51~1.00 | 863 | 19.12 | 646 | 27.87 | |
Moderate intensity | 1.01~2.00 | 970 | 21.49 | 636 | 27.44 |
2.01–3.00 | 277 | 6.14 | 175 | 7.55 | |
High intensity | 3.01~5.00 | 207 | 4.59 | 72 | 3.11 |
5.01~7.00 | 93 | 2.06 | 12 | 0.52 | |
Extra high strength | 7.01~17.7 | 59 | 1.31 | 0 | 0.00 |
No data | - | 180 | 3.99 | 38 | 1.64 |
Total | 4513 | 100 | 2318 | 100 |
Primary Indicators | Secondary Indicators | Data Calculation | Unit | |
---|---|---|---|---|
Dependent variable | CO2 | Emissions per unit area | 10 kt/km2 | |
Independent variable | Urban development intensity | POP | population/area | 10 kp/km2 |
NTL | Average value per kilometer grid | - | ||
NDVI | Average value per kilometer grid | - | ||
Land use | Proportion of construction land | Construction/total | % | |
Proportion of agricultural land | Agricultural/total | % | ||
Proportion of ecological land | Ecological/total | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Yuan, Y.; Chen, Y.; Li, H. Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level Based on Ring-Layer and Direction Model: A Case Study of Shenzhen, China. Land 2025, 14, 1714. https://doi.org/10.3390/land14091714
Ye L, Yuan Y, Chen Y, Li H. Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level Based on Ring-Layer and Direction Model: A Case Study of Shenzhen, China. Land. 2025; 14(9):1714. https://doi.org/10.3390/land14091714
Chicago/Turabian StyleYe, Lin, Yuan Yuan, Yu Chen, and Hongbo Li. 2025. "Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level Based on Ring-Layer and Direction Model: A Case Study of Shenzhen, China" Land 14, no. 9: 1714. https://doi.org/10.3390/land14091714
APA StyleYe, L., Yuan, Y., Chen, Y., & Li, H. (2025). Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level Based on Ring-Layer and Direction Model: A Case Study of Shenzhen, China. Land, 14(9), 1714. https://doi.org/10.3390/land14091714