This study examines the determinants of apartment prices in 17 post-WWII multi-family housing estates in Ljubljana, Slovenia, constructed between 1947 and 1986. Using 1973 verified transactions from 2020 to 2025, the analysis evaluates spatial, structural, environmental, and accessibility-related variables through a combination of
[...] Read more.
This study examines the determinants of apartment prices in 17 post-WWII multi-family housing estates in Ljubljana, Slovenia, constructed between 1947 and 1986. Using 1973 verified transactions from 2020 to 2025, the analysis evaluates spatial, structural, environmental, and accessibility-related variables through a combination of statistical and machine learning techniques. A hedonic price model based on ordinary least squares (OLS) demonstrates modest explanatory power (R
2 = 0.171), identifying local market reference prices, floor level, noise exposure, and window renovation as significant predictors. In contrast, seven machine learning models—Random Forest, XGBoost, and Gradient Boosting Machines (GBMs), including optimized versions—achieve notably higher predictive accuracy. The best-performing model, GBM with Randomized Search CV, explains 59.6% of price variability (R
2 = 0.5957), with minimal prediction error (MAE = 0.03). Feature importance analysis confirms the dominant role of localized price references and structural indicators, while environmental and accessibility variables contribute variably. In addition, three clustering methods (Ward,
k-means, and HDBSCAN) are employed to identify typological groups of neighborhoods. While Ward’s and
k-means methods consistently identify four robust clusters, HDBSCAN captures greater internal heterogeneity, suggesting five distinct groups and detecting outlier neighborhoods. The integrated approach enhances understanding of spatial housing price dynamics and supports data-driven valuation, urban policy, and regeneration strategies for post-WWII housing estates in Central and Eastern European contexts.
Full article