Research on the Effect and Mechanism of Provincial Construction Land Spatial Agglomeration Empowering Economic Resilience in China
Abstract
1. Introduction
2. Policy Background, Analytical Framework, and Mechanism of Action
2.1. Policy Background
2.2. Analytical Framework
2.2.1. Spatial Agglomeration of Spatial Allocation of Construction Land Resources
2.2.2. The Revealing of Regional Economic Resilience on Regional Spatial Relations
2.2.3. An Analysis Framework of “Structure-Conduct-Performance” for the Economic Resilience Empowered by the Spatial Agglomeration of Construction Land Resources
2.3. Mechanism of Action
3. Research Design
3.1. Model Specification
3.1.1. Fixed-Effects Model
3.1.2. Four-Stage Mediating Effect Model
3.2. Variable Measurement
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Mediating Variables
3.2.4. Control Variables
3.3. Sample Selection and Variable Statistics
4. Empirical Analysis
4.1. Benchmark Regression
4.2. Robustness Test
4.3. Endogeneity Discussion
4.4. Mechanism Test
4.5. Expanded Research
4.5.1. The Regulatory Effect of the Scale of Provincial Construction Land
4.5.2. Non-Linear Effect
4.5.3. Regional Heterogeneity
5. Conclusions and Discussion
5.1. Conclusions
5.2. Recommendation
5.3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Reggiani, A.; Graaff, T.D.; Nijkamp, P. Resilience: An evolutionary approach to spatial economic systems. Netw. Spat. Econ. 2002, 2, 211–229. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Gardiner, B.; Martin, R. Does spatial agglomeration increase national growth? some evidence from Europe. J. Econ. Geogr. 2011, 11, 979–1006. [Google Scholar] [CrossRef]
- Brülhart, M.; Sbergami, F. Agglomeration and growth: Cross-country evidence. J. Urban Econ. 2009, 65, 48–63. [Google Scholar] [CrossRef]
- Brown, L.; Greenbaum, R.T. The role of industrial diversity in economic resilience: An empirical examination across 35 years. Urban Stud. 2017, 54, 1347–1366. [Google Scholar] [CrossRef]
- Cainelli, G.; Ganau, R.; Modica, M. Does related variety affect regional resilience? New evidence from Italy. Ann. Reg. Sci. 2019, 62, 657–680. [Google Scholar] [CrossRef]
- Li, Y.; Andersson, M.; Kim, E.; Kohlhase, J.E. Industrial variety, interregional industrial linkages, and regional resilience: Evidence from China. Ann. Reg. Sci. 2024, 73, 1321–1338. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Zhu, Y. Shock absorber and shock diffuser: The multiple roles of industrial diversity in shaping regional economic resilience after the Great Recession. Ann. Reg. Sci. 2024, 72, 1015–1045. [Google Scholar] [CrossRef]
- He, B.; Tang, M.; Zhang, C. Financial technology, regional financial agglomeration, and urban economic resilience. Financ. Res. Lett. 2024, 68, 105990. [Google Scholar] [CrossRef]
- Ye, Z.; Li, J.; Chen, J. The promotion mechanism of financial agglomeration and human capital on urban economic resilience: Based on the moderating effect of industrial structure. Int. Rev. Econ. Fin. 2025, 97, 103764. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Li, H. A study of the spillover effects of digital financial agglomeration on economic resilience. Front. Appl. Math. Stat. 2023, 8, 1085563. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Shen, Z.; Yu, J.; Xu, Z. The Impact of Population Agglomeration on Economic Resilience: Evidence from 280 Cities in China. Int. Rev. Econ. Fin. 2024, 94, 103429. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, X.; Huang, C. Influence of population agglomeration on urban economic resilience in China. Sustainability 2022, 14, 10407. [Google Scholar] [CrossRef]
- Ifi, B.D.; Duran, H.E. Polycentricity and regional Economic Resilience: A Ridge Regression approach. Pap. Reg. Sci. 2025, 104, 100089. [Google Scholar] [CrossRef]
- Liang, W.; Wang, D.; Gao, L.; Li, C. Study on the impact of China’s urban agglomerations tiered spatial structure on regional economic resilience. PLoS ONE 2025, 20, 0314538. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Ma, X.; Shang, Y.; Zhao, X. Influences of land resource assets on economic growth and fluctuation in China. Resour. Policy 2020, 68, 101779. [Google Scholar] [CrossRef]
- Cai, E.; Zhao, X.; Zhang, S.; Li, L. Spatial Agglomeration and Coupling Coordination of Population, Economics, and Construction Land in Chinese Prefecture-Level Cities from 2010 to 2020. Land 2023, 12, 1561. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Land misallocation and economic performance: Evidence from China. Appl. Econ. 2023, 55, 7048–7064. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, L.; Yu, X.; Zhang, Y. Impact of land quota and land supply structure on China’s housing prices: Quasi-natural experiment based on land quota policy adjustment. Land Use Policy 2021, 106, 105452. [Google Scholar] [CrossRef]
- Peng, S.; Wang, J.; Sun, H.; Guo, Z. How Does the Spatial Misallocation of Land Resources Affect Urban Industrial Transformation and Upgrading? Evidence from China. Land 2022, 11, 1630. [Google Scholar] [CrossRef]
- Chen, M.; Zeng, L.; Deng, Y.; Chen, S.; Gu, X. The Impact of Land Marketization on Urban Resilience: Empirical Evidence from Chinese Cities. Land 2024, 13, 1385. [Google Scholar] [CrossRef]
- Xu, F.; Wang, H.; Chi, G. Does market-oriented land conveyance affect regional economic resilience? A spatial and mediation analysis based on 287 Chinese cities. Land Use Policy 2025, 150, 107457. [Google Scholar] [CrossRef]
- Yu, L.; Cai, Y. Research on Spatial Regulation of Land Use Planning and Coordinated Development of Regional Economy: An Analytical Framework. J. Nat. Resour. 2017, 32, 1445–1456. (In Chinese) [Google Scholar]
- Lu, M. Reconfiguration of Construction Land Use Rights across Regions: A New Driver for China’s Economic Growth. J. World Econ. 2011, 34, 107–125. (In Chinese) [Google Scholar]
- Bellandi, M.; Ruiz-Fuensanta, M.J. An empirical analysis of district external economies based on a structure-conduct-performance framework. Pap. Reg. Sci. 2010, 89, 801–818. [Google Scholar] [CrossRef]
- Khan, H.H.; Ahmad, R.B.; Chan, S. Market structure, bank conduct and bank performance: Evidence from ASEAN. J. Policy Model 2018, 40, 934–958. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Meijers, E.J.; Burger, M.J. Spatial Structure and Productivity in US Metropolitan Areas. Environ. Plan. A 2010, 42, 1383–1402. [Google Scholar] [CrossRef]
- Zhang, K.; He, D. Spatial Classification and Spatial Selection: New Frontiers of Agglomeration Theory. Economist 2020, 31, 34–47. (In Chinese) [Google Scholar]
- Du, Y.; Wang, Q.; Song, Y.; Xin, Y. How cross-regional collaborative innovation networks affect regional economic resilience: Evidence from 283 cities in China. Technol. Forecast. Soc. Change 2025, 215, 124057. [Google Scholar] [CrossRef]
- Pilerdenti, A.; Gkototi, P.; Vezany, A.; Zinilli, A. Are innovative regions more resilient? Evidence from Europe in 2008–2016. Econ. Polit. 2020, 37, 807–832. [Google Scholar]
- Bristow, G.; Healy, A. Innovation and regional economic resilience: An exploratory analysis. Ann. Reg. Sci. 2018, 60, 265–284. [Google Scholar] [CrossRef]
- Bishop, P. Knowledge diversity and entrepreneurship after the economic crisis: An empirical study of resilience in the UK. Entrep. Reg. Dev. 2019, 31, 496–515. [Google Scholar] [CrossRef]
- Faggian, A.; Gemmiti, R.; Jaquet, T.; Santini, I. Regional Economic Resilience: The Experience of the Italian Local Labor Systems. Ann. Reg. Sci. 2018, 60, 393–410. [Google Scholar] [CrossRef]
- Giannakisa, E.; Bruggeman, A.; Mamuneas, T.P. Regional economic resilience, productivity growth and sectoral interconnectedness. Pap. Reg. Sci. 2024, 103, 100010. [Google Scholar] [CrossRef]
- Lambarraa-Lehnhardt, F.; Walls, M.; Latati, M.; Raggas, A.; Ihle, R. Resilience and technical efficiency trade-offs: Implications to the sustainability of farming systems in Algeria and Spain. J. Agric. Food Res. 2025; in press. [Google Scholar] [CrossRef]
- Ding, C.; Huang, X.; Zhou, M. Dialect Diversity, Factor Aggregation and City Size: An Empirical Test Based on Satellite Nighttime Light Data. Financ. Trade Econ. 2020, 41, 80–94. (In Chinese) [Google Scholar]
- Davis, D.R.; Weinstein, D.E. Bones, Bombs, and Break Points: The Geography of Economic Activity. Am. Econ. Rev. 2002, 92, 1269–1289. [Google Scholar] [CrossRef]
- Lu, M. How Does Land Policy Affect Economic Competitiveness? China Real Estate 2015, 30, 46–49. (In Chinese) [Google Scholar]
- Zhou, R.; Li, J. Enhancement of Total Factor Productivity and New Kinetic Energy Growth of China’s Economic Growth. Mod. Econ. Res. 2019, 25, 17–24. (In Chinese) [Google Scholar]
- Zhang, Z.; Lu, M. The Impact of Total Factor Productivity on Regional Economic Growth and Fluctuations in China. Chin. Rev. Financ. Stud. 2013, 5, 7–31, 123. (In Chinese) [Google Scholar]
- Feng, Y.; Lee, C.C.; Peng, D. Does regional integration improve economic resilience? Evidence from urban agglomerations in China. Sustain. Cities Soc. 2023, 88, 104273. [Google Scholar] [CrossRef]
Variable Properties | Variable | Variable Symbol | Mean Value | Standard Error | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|
Explained variable | Economic resilience | R_A | 0.011 | 0.020 | −0.098 | 0.084 |
Explanatory variable | Construction land spatial agglomeration | S | 0.320 | 0.125 | 0.134 | 0.721 |
Mediating variables | Innovation | I | 9.363 | 1.742 | 5.366 | 13.679 |
Technical efficiency | T | 0.377 | 0.229 | 0.043 | 0.978 | |
Control variables | Scale of construction land | scale | 6.926 | 0.702 | 4.678 | 8.676 |
Foreign direct investment level | fdi | 0.022 | 0.019 | 0.000 | 0.105 | |
Level of industrial diversification | div | 2.409 | 1.076 | 0.417 | 9.754 | |
Level of financial development | fin | 2.728 | 0.740 | 1.413 | 4.969 | |
Manufacturing agglomeration | agg | 0.982 | 0.143 | 0.588 | 1.501 | |
Upgrading of industrial structure | ais | 1.018 | 0.258 | 0.518 | 1.953 | |
Degree of government intervention | gov | 0.204 | 0.085 | 0.069 | 0.465 | |
Level of human capital | edu | 0.016 | 0.007 | 0.002 | 0.034 | |
Intensity of environmental regulation | eg | 0.004 | 0.004 | 0.000 | 0.029 | |
Level of urbanization | urb | 0.499 | 0.124 | 0.233 | 0.748 | |
Level of transportation infrastructure | railway | 0.020 | 0.019 | 0.004 | 0.391 |
Variables | Fixed Effect | Random Effect | ||||
---|---|---|---|---|---|---|
(1) R_A | (2) R_A | (3) R_A | (4) R_A | (5) R_A | (6) R_A | |
S | 0.038 ** | 0.052 *** | 0.046 ** | 0.015 | 0.034 ** | 0.043 *** |
(0.02) | (0.02) | (0.02) | (0.01) | (0.01) | (0.01) | |
scale | 0.019 *** | 0.015 * | 0.008 ** | 0.009 ** | ||
(0.01) | (0.01) | (0.00) | (0.00) | |||
fdi | 0.151 *** | 0.166 *** | ||||
(0.06) | (0.05) | |||||
div | 0.001 | 0.001 | ||||
(0.00) | (0.00) | |||||
agg | 0.013 | 0.007 | ||||
(0.01) | (0.01) | |||||
is | 0.002 | −0.002 | ||||
(0.01) | (0.01) | |||||
gov | 0.180 *** | 0.139 *** | ||||
(0.04) | (0.03) | |||||
edu | −0.439 | −0.576 | ||||
(0.52) | (0.39) | |||||
hjgz | −0.277 | −0.304 | ||||
(0.28) | (0.27) | |||||
fin | −0.013 *** | −0.012 *** | ||||
(0.00) | (0.00) | |||||
urb | 0.091 ** | 0.036 * | ||||
(0.04) | (0.02) | |||||
railway | 0.053 | 0.035 | ||||
(0.04) | (0.04) | |||||
Constant | −0.002 | −0.126 *** | −0.144 *** | 0.005 | −0.052 ** | −0.067 ** |
(0.01) | (0.04) | (0.06) | (0.01) | (0.02) | (0.03) | |
Time effect | Yes | Yes | Yes | Yes | Yes | Yes |
N | 529 | 529 | 529 | 529 | 529 | 529 |
R2 | 0.291 | 0.302 | 0.398 | 0.289 | 0.298 | 0.389 |
Variable | (1) R_B | (2) R_C | (3) R_D | (4) R_A | (5) R_B | (6) R_C | (7) R_D |
---|---|---|---|---|---|---|---|
S | 0.039 ** | 0.037 ** | 0.037 ** | 0.066 *** | 0.059 *** | 0.056 *** | 0.056 *** |
(0.02) | (0.02) | (0.02) | (0.02) | (0.02) | (0.02) | (0.02) | |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −0.136 *** | −0.158 *** | −0.125 ** | −0.193 *** | −0.176 *** | −0.198 *** | −0.168 *** |
(0.05) | (0.05) | (0.05) | (0.06) | (0.05) | (0.05) | (0.05) | |
R2 | 0.395 | 0.837 | 0.392 | 0.438 | 0.440 | 0.781 | 0.438 |
Variable | The First Stage | The Second Stage | |||
---|---|---|---|---|---|
(1) S | (2) R_A | (3) R_B | (4) R_C | (5) R_D | |
IV (exchange rate/dialect diversity) | 0.046 *** (0.01) | ||||
S | 0.219 ** (0.10) | 0.191 ** (0.09) | 0.188 ** (0.09) | 0.188 ** (0.09) | |
Control variable | YES | YES | YES | YES | YES |
Time effect | YES | YES | YES | YES | YES |
R2 | 0.341 | 0.294 | 0.298 | 0.809 | 0.290 |
Cragg–Donald Wald F | 19.724 |
Variable | (1) R_A | (2) I | (3) R_A | (4) R_A | (5) T | (6) R_A | (7) R_A |
---|---|---|---|---|---|---|---|
S | 0.046 ** | 1.029 *** | 0.040 ** | −0.009 *** | 0.027 | ||
(0.02) | (0.30) | (0.02) | (0.00) | (0.02) | |||
I | 0.007 ** | 0.006 * | |||||
(0.00) | (0.00) | ||||||
T | −2.159 *** | −2.006 *** | |||||
(0.47) | (0.48) | ||||||
Time effect | YES | YES | YES | YES | YES | YES | YES |
Control variables | YES | YES | YES | YES | YES | YES | YES |
Constant | −0.144 *** | 2.109 ** | −0.130 ** | −0.156 *** | 0.370 *** | 0.672 *** | 0.597 *** |
(0.06) | (0.88) | (0.05) | (0.06) | (0.01) | (0.18) | (0.18) | |
R2 | 0.398 | 0.972 | 0.398 | 0.403 | 0.941 | 0.418 | 0.420 |
Sobel-Z | - | 1.690 | 3.309 | ||||
Bootstrap confidence interval | - | [0.0016, 0.0152] | [0.0116, 0.0321] |
Variable | (1) R_A | (2) R_A | (3) R_A | (4) R_A |
---|---|---|---|---|
S | 0.052 *** | 0.068 *** | 0.046 ** | 0.061 *** |
(0.02) | (0.02) | (0.02) | (0.02) | |
scale | 0.019 *** | 0.019 *** | 0.015 * | 0.014 * |
(0.01) | (0.01) | (0.01) | (0.01) | |
S×scale | 0.087 *** | 0.072 *** | ||
(0.02) | (0.02) | |||
Time effect | YES | YES | YES | YES |
Control variable | NO | NO | YES | YES |
Constant | −0.126 *** | −0.123 *** | −0.144 *** | −0.141 ** |
(0.04) | (0.04) | (0.06) | (0.06) | |
R2 | 0.302 | 0.322 | 0.398 | 0.410 |
Variable | (1) Total Sample | (2) Total Sample | (3) Total Sample | (4) Total Sample | (5) Turning Point Left | (6) Turning Point Right | (7) 0.1 Quantile | (8) 0.25 Quantile | (9) 0.50 Quantile | (10) 0.75 Quantile | (11) 0.90 Quantile |
---|---|---|---|---|---|---|---|---|---|---|---|
S | −0.253 | −0.297 * | 0.250 *** | 0.288 *** | 0.104 *** | 0.160 | 0.016 | 0.035 | 0.054 ** | 0.047 ** | 0.058 *** |
(0.16) | (0.17) | (0.06) | (0.06) | (0.02) | (0.13) | (0.02) | (0.03) | (0.02) | (0.02) | (0.02) | |
S2 | 1.097 *** | 1.281 *** | −0.269 *** | −0.305 *** | |||||||
(0.42) | (0.43) | (0.08) | (0.08) | ||||||||
S2 | −1.117 *** (0.33) | −1.290 *** (0. 34) | |||||||||
Time effect | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Control variables | NO | YES | NO | YES | YES | YES | YES | YES | YES | YES | YES |
Constant | 0.017 | −0.093 | −0.037 *** | −0.191 *** | −0.115 ** | 0.073 | −0.209 *** | −0.182 ** | −0.080 | −0.073 | −0.082 * |
(0.02) | (0.06) | (0.01) | (0.06) | (0.06) | (0.29) | (0.05) | (0.07) | (0.06) | (0.05) | (0.05) | |
N | 529 | 529 | 529 | 529 | 456 | 73 | 529 | 529 | 529 | 529 | 529 |
R2 | 0.323 | 0.435 | 0.308 | 0.418 | 0.463 | 0.716 | 0.439 | 0.351 | 0.344 | 0.412 | 0.489 |
Variable | (1) Eastern Region | (2) Eastern Region | (3) Central Region | (4) Central Region | (5) Western Region | (6) Western Region |
---|---|---|---|---|---|---|
S | 0.022 | −0.769 ** | 0.041 | −0.067 | 0.069 ** | 0.533 *** |
(0.06) | (0.37) | (0.05) | (0.15) | (0.03) | (0.11) | |
S2 | 1.488 ** | 0.153 | −0.509 *** | |||
(0.69) | (0.20) | (0.12) | ||||
Time effect | YES | YES | YES | YES | YES | YES |
Control variable | YES | YES | YES | YES | YES | YES |
Constant | −0.289 * | −0.199 | −0.055 | −0.029 | 0.011 | −0.120 |
(0.15) | (0.15) | (0.11) | (0.12) | (0.12) | (0.12) | |
N | 161 | 161 | 184 | 184 | 184 | 184 |
R2 | 0.652 | 0.666 | 0.485 | 0.487 | 0.582 | 0.629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Zhong, S.; Ren, J. Research on the Effect and Mechanism of Provincial Construction Land Spatial Agglomeration Empowering Economic Resilience in China. Land 2025, 14, 1762. https://doi.org/10.3390/land14091762
Yan C, Zhong S, Ren J. Research on the Effect and Mechanism of Provincial Construction Land Spatial Agglomeration Empowering Economic Resilience in China. Land. 2025; 14(9):1762. https://doi.org/10.3390/land14091762
Chicago/Turabian StyleYan, Chengli, Shunchang Zhong, and Jiao Ren. 2025. "Research on the Effect and Mechanism of Provincial Construction Land Spatial Agglomeration Empowering Economic Resilience in China" Land 14, no. 9: 1762. https://doi.org/10.3390/land14091762
APA StyleYan, C., Zhong, S., & Ren, J. (2025). Research on the Effect and Mechanism of Provincial Construction Land Spatial Agglomeration Empowering Economic Resilience in China. Land, 14(9), 1762. https://doi.org/10.3390/land14091762