Complex Study of the Physiological and Microclimatic Attributes of Street Trees in Microenvironments with Small-Scale Heterogeneity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Tree Selection
2.2. Microclimate and Insolation Conditions
2.3. Sample Collection and Determination of Leaf Relative Water Content
2.4. Pigment Content of Leaves
2.5. Statistical Analyses
3. Results
3.1. Difference in the Insolation and the Microclimate
3.2. Changes in Leaf Water Content and Pigmentation During the Vegetation Period
3.3. Leaf Chlorophyll and Carotenoid Content Changes During the Vegetation Period
3.4. Relationships Between Physiological and Environmental Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Un-Habitat. World Cities Report 2022: Envisaging the Future of Cities; Un-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- Wang, J.; Zhou, W.; Jiao, M. Location Matters: Planting Urban Trees in the Right Places Improves Cooling. Front. Ecol. Environ. 2022, 20, 147–151. [Google Scholar] [CrossRef]
- Helletsgruber, C.; Gillner, S.; Gulyás, Á.; Junker, R.R.; Tanács, E.; Hof, A. Identifying Tree Traits for Cooling Urban Heat Islands—A Cross-City Empirical Analysis. Forests 2020, 11, 1064. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of Street Trees in Mitigating Effects of Heat and Drought at Highly Sealed Urban Sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The Cooling Effect of Green Spaces as a Contribution to the Mitigation of Urban Heat: A Case Study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Pauleit, S.; Duhme, F. Assessing the Environmental Performance of Land Cover Types for Urban Planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5. 1 and Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Gren, Å.; Barton, D.N.; Langemeyer, J.; McPhearson, T.; O’farrell, P.; Andersson, E.; Hamstead, Z.; Kremer, P. Urban Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer: Heidelberg, Germany, 2013; pp. 175–251. [Google Scholar]
- Liang, D.; Huang, G. Influence of Urban Tree Traits on Their Ecosystem Services: A Literature Review. Land 2023, 12, 1699. [Google Scholar] [CrossRef]
- La Notte, A.; Czúcz, B.; Vallecillo, S.; Polce, C.; Maes, J. Ecosystem Condition Underpins the Generation of Ecosystem Services: An Accounting Perspective. One Ecosyst. 2022, 7, e81487. [Google Scholar] [CrossRef]
- Nedkov, S.; Zhiyanski, M.; Dimitrov, S.; Borisova, B.; Popov, A.; Ihtimanski, I.; Yaneva, R.; Nikolov, P.; Bratanova-Doncheva, S. Mapping and Assessment of Urban Ecosystem Condition and Services Using Integrated Index of Spatial Structure. One Ecosyst. 2017, 2, e14499. [Google Scholar] [CrossRef]
- Tonyaloğlu, E.E. Spatiotemporal Dynamics of Urban Ecosystem Services in Turkey: The Case of Bornova, Izmir. Urban For. Urban Green. 2020, 49, 126631. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Y.; Zeng, H. Assessment of Urban Ecosystem Condition and Ecosystem Services in Shenzhen Based on the MAES Analysis Framework. Ecol. Indic. 2023, 155, 110962. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and Climate Related Ecosystem Services Provided by Street Trees in the Urban Environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef]
- Pretzsch, H.; Moser-Reischl, A.; Rahman, M.; Pauleit, S.; Rötzer, T. Towards Sustainable Management of the Stock and Ecosystem Services of Urban Trees. From Theory to Model and Application. Trees 2023, 37, 177–196. [Google Scholar] [CrossRef]
- Rötzer, T.; Rahman, M.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process Based Simulation of Tree Growth and Ecosystem Services of Urban Trees under Present and Future Climate Conditions. Sci. Total Environ. 2019, 676, 651–664. [Google Scholar] [CrossRef]
- Rötzer, T.; Moser-Reischl, A.; Rahman, M.; Grote, R.; Pauleit, S.; Pretzsch, H. Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives. Prog. Bot. 2021, 82, 405–464. [Google Scholar]
- Leal Filho, W.; Wolf, F.; Castro-Díaz, R.; Li, C.; Ojeh, V.N.; Gutiérrez, N.; Nagy, G.J.; Savić, S.; Natenzon, C.E.; Quasem Al-Amin, A.; et al. Addressing the Urban Heat Islands Effect: A Cross-Country Assessment of the Role of Green Infrastructure. Sustainability 2021, 13, 753. [Google Scholar] [CrossRef]
- Cuce, P.M.; Cuce, E.; Santamouris, M. Towards Sustainable and Climate-Resilient Cities: Mitigating Urban Heat Islands through Green Infrastructure. Sustainability 2025, 17, 1303. [Google Scholar] [CrossRef]
- Haase, D.; Hellwig, R. Effects of Heat and Drought Stress on the Health Status of Six Urban Street Tree Species in Leipzig, Germany. Trees For. People 2022, 8, 100252. [Google Scholar] [CrossRef]
- Warner, K.; Sonti, N.F.; Cook, E.M.; Hallett, R.A.; Hutyra, L.R.; Reinmann, A.B. Urbanization Exacerbates Climate Sensitivity of Eastern U Nited S Tates Broadleaf Trees. Ecol. Appl. 2024, 34, e2970. [Google Scholar] [CrossRef]
- Sjöman, H.; Nielsen, A.B. Selecting Trees for Urban Paved Sites in Scandinavia–A Review of Information on Stress Tolerance and Its Relation to the Requirements of Tree Planners. Urban For. Urban Green. 2010, 9, 281–293. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Hirsch, M.; Böddeker, H.; Albrecht, A.; Saha, S. Drought Tolerance Differs between Urban Tree Species but Is Not Affected by the Intensity of Traffic Pollution. Trees 2023, 37, 111–131. [Google Scholar] [CrossRef]
- Molnár, V.É.; Tóthmérész, B.; Szabó, S.; Simon, E. Urban Tree Leaves’ Chlorophyll—A Content as a Proxy of Urbanization. Air Qual. Atmos. Health 2018, 11, 665–671. [Google Scholar] [CrossRef]
- Petrova, S.T.; Yurukova, L.D.; Velcheva, I.G. Assessment of the Urban Trees Health Status on the Base of Nutrient and Pigment Content in Their Leaves. J. Biol. Sci. Biotechnol. 2014, 3, 69–77. [Google Scholar]
- Le Saint, T.; Nabucet, J.; Hubert-Moy, L.; Adeline, K. Estimation of Urban Tree Chlorophyll Content and Leaf Area Index Using Sentinel-2 Images and 3D Radiative Transfer Model Inversion. Remote Sens. 2024, 16, 3867. [Google Scholar] [CrossRef]
- Le Saint, T.; Nabucet, J.; Sulmon, C.; Pellen, J.; Adeline, K.; Hubert-Moy, L. A Spatio-Temporal Dataset for Ecophysiological Monitoring of Urban Trees. Data Brief 2024, 57, 111010. [Google Scholar] [CrossRef]
- Locosselli, G.M.; de Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; de Fátima Andrade, M.; de André, C.D.S.; de Andre, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.H.N.; et al. The Role of Air Pollution and Climate on the Growth of Urban Trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Ač, A.; Marek, M.V.; Kalina, J.; Urban, O. Differences in Pigment Composition, Photosynthetic Rates and Chlorophyll Fluorescence Images of Sun and Shade Leaves of Four Tree Species. Plant Physiol. Biochem. 2007, 45, 577–588. [Google Scholar] [CrossRef]
- Stanley, C.H.; Helletsgruber, C.; Hof, A. Mutual Influences of Urban Microclimate and Urban Trees: An Investigation of Phenology and Cooling Capacity. Forests 2019, 10, 533. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schütze, G.; Perkins, D.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; et al. Climate Change Accelerates Growth of Urban Trees in Metropolises Worldwide. Sci. Rep. 2017, 7, 15403. [Google Scholar] [CrossRef]
- Jang, J.; Leung, D.W. The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review. Urban Sci. 2022, 6, 37. [Google Scholar] [CrossRef]
- Martínez-Villa, J.A.; Paquette, A.; Feeley, K.J.; Morales-Morales, P.A.; Messier, C.; Durán, S.M. Changes in Morphological and Physiological Traits of Urban Trees in Response to Elevated Temperatures within an Urban Heat Island. Tree Physiol. 2024, 44, tpae145. [Google Scholar] [CrossRef]
- Konarska, J.; Tarvainen, L.; Bäcklin, O.; Räntfors, M.; Uddling, J. Surface Paving More Important than Species in Determining the Physiology, Growth and Cooling Effects of Urban Trees. Landsc. Urban Plan. 2023, 240, 104872. [Google Scholar] [CrossRef]
- Gebert, L.; Coutts, A.; Tapper, N. The Influence of Urban Canyon Microclimate and Contrasting Photoperiod on the Physiological Response of Street Trees and the Potential Benefits of Water Sensitive Urban Design. Urban For. Urban Green. 2019, 40, 152–164. [Google Scholar] [CrossRef]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. J. Environ. Qual. 2016, 45, 167–174. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Pearlmutter, D. The Significance of Shade Provision in Reducing Street-Level Summer Heat Stress in a Hot Mediterranean Climate. Landsc. Urban Plan. 2023, 229, 104588. [Google Scholar] [CrossRef]
- Kacsova, C.; Kiss, M.; Gulyás, Á. Studying The Growth Characteristics of Urban Trees Using An Example From Szeged, Hungary. Acta Climatol. Et Chorol. 2021, 55, 17–26. [Google Scholar] [CrossRef]
- Czúcz, B.; Keith, H.; Maes, J.; Driver, A.; Jackson, B.; Nicholson, E.; Kiss, M.; Obst, C. Selection Criteria for Ecosystem Condition Indicators. Ecol. Indic. 2021, 133, 108376. [Google Scholar] [CrossRef]
- Talebzadeh, F.; Valeo, C. Evaluating the Effects of Environmental Stress on Leaf Chlorophyll Content as an Index for Tree Health. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bristol, UK, 19 December 2021; IOP Publishing: Bristol, UK, 2022; Volume 1006, p. 012007. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated; Gebrüder Borntraeger: Stuttgart, Germany, 2006; Volume 15. [Google Scholar]
- Liu, Y.; El-Kassaby, Y.A. Evapotranspiration and Favorable Growing Degree-Days Are Key to Tree Height Growth and Ecosystem Functioning: Meta-Analyses of Pacific Northwest Historical Data. Sci. Rep. 2018, 8, 8228. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4-3. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A. Past: Paleontological Statistics Software Package for Educaton and Data Anlysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H.; et al. Community Ecology Package. R Package Version 2013, 2, 321–326. [Google Scholar]
- Team, R.C. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-Destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Stratópoulos, L.M.F.; Zhang, C.; Duthweiler, S.; Häberle, K.-H.; Rötzer, T.; Xu, C.; Pauleit, S. Tree Species from Two Contrasting Habitats for Use in Harsh Urban Environments Respond Differently to Extreme Drought. Int. J. Biometeorol. 2019, 63, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ni, Y.; Li, M. Evaluation of the Growth, Adaption, and Ecosystem Services of Two Potentially-Introduced Urban Tree Species in Guangzhou under Drought Stress. Sci. Rep. 2023, 13, 3563. [Google Scholar] [CrossRef]
- Takács, Á.; Kiss, M.; Hof, A.; Tanács, E.; Gulyás, Á.; Kántor, N. Microclimate Modification by Urban Shade Trees–an Integrated Approach to Aid Ecosystem Service Based Decision-Making. Procedia Environ. Sci. 2016, 32, 97–109. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Gold, A.; Rötzer, T.; Pauleit, S. Vertical Air Temperature Gradients under the Shade of Two Contrasting Urban Tree Species during Different Types of Summer Days. Sci. Total Environ. 2018, 633, 100–111. [Google Scholar] [CrossRef]
- Muhammad Aslam, M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef]
- Dale, M.; Causton, D. Use of the Chlorophyll a/b Ratio as a Bioassay for the Light Environment of a Plant. Funct. Ecol. 1992, 6, 190–196. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Babani, F. Light Adaptation and Senescence of the Photosynthetic Apparatus. Changes in Pigment Composition, Chlorophyll Fluorescence Parameters and Photosynthetic Activity. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Berlin, Germany, 2004; pp. 713–736. [Google Scholar]
- Melis, A.; Harvey, G. Regulation of Photosystem Stoichiometry, Chlorophyll a and Chlorophyll b Content and Relation to Chloroplast Ultrastructure. Biochim. Et Biophys. Acta (BBA) Bioenerg. 1981, 637, 138–145. [Google Scholar] [CrossRef]
- Radoglou, K.; Dobrowolska, D.; Spyroglou, G.; Nicolescu, V.-N. A Review on the Ecology and Silviculture of Limes (Tilia Cordata Mill., Tilia Platyphyllos Scop. and Tilia Tomentosa Moench.) in Europe. Romania 2008, 15, 16. [Google Scholar]
- d’Alessandro, S.; Beaugelin, I.; Havaux, M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. Mol. Plant 2020, 13, 1545–1555. [Google Scholar] [CrossRef]
- Nath, K.; Phee, B.-K.; Jeong, S.; Lee, S.Y.; Tateno, Y.; Allakhverdiev, S.I.; Lee, C.-H.; Nam, H.G. Age-Dependent Changes in the Functions and Compositions of Photosynthetic Complexes in the Thylakoid Membranes of Arabidopsis Thaliana. Photosynth. Res. 2013, 117, 547–556. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Gilmore, A.M.; Iii, W.W.A. In Vivo Functions of Carotenoids in Higher Plants. FASEB J. 1996, 10, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Edge, R.; McGarvey, D.; Truscott, T. The Carotenoids as Anti-Oxidants—A Review. J. Photochem. Photobiol. B Biol. 1997, 41, 189–200. [Google Scholar] [CrossRef]
- Biswal, B. Carotenoid Catabolism during Leaf Senescence and Its Control by Light. J. Photochem. Photobiol. B Biol. 1995, 30, 3–13. [Google Scholar] [CrossRef]
- Fang, Z.; Bouwkamp, J.C.; Solomos, T. Chlorophyllase Activities and Chlorophyll Degradation during Leaf Senescence in Non-Yellowing Mutant and Wild Type of Phaseolus vulgaris L. J. Exp. Bot. 1998, 49, 503–510. [Google Scholar]
- Zhou, X.; Huang, W.; Zhang, J.; Kong, W.; Casa, R.; Huang, Y. A Novel Combined Spectral Index for Estimating the Ratio of Carotenoid to Chlorophyll Content to Monitor Crop Physiological and Phenological Status. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 128–142. [Google Scholar] [CrossRef]
- Süßel, F.; Brüggemann, W. Tree Water Relations of Mature Oaks in Southwest Germany under Extreme Drought Stress in Summer 2018. Plant Stress 2021, 1, 100010. [Google Scholar] [CrossRef]
- Zani, D.; Crowther, T.W.; Mo, L.; Renner, S.S.; Zohner, C.M. Increased Growing-Season Productivity Drives Earlier Autumn Leaf Senescence in Temperate Trees. Science 2020, 370, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Pace, R.; De Fino, F.; Rahman, M.A.; Pauleit, S.; Nowak, D.J.; Grote, R. A Single Tree Model to Consistently Simulate Cooling, Shading, and Pollution Uptake of Urban Trees. Int. J. Biometeorol. 2021, 65, 277–289. [Google Scholar] [CrossRef]
- Delegido, J.; Van Wittenberghe, S.; Verrelst, J.; Ortiz, V.; Veroustraete, F.; Valcke, R.; Samson, R.; Rivera, J.P.; Tenjo, C.; Moreno, J. Chlorophyll Content Mapping of Urban Vegetation in the City of Valencia Based on the Hyperspectral NAOC Index. Ecol. Indic. 2014, 40, 34–42. [Google Scholar] [CrossRef]
- Degerickx, J.; Roberts, D.A.; McFadden, J.P.; Hermy, M.; Somers, B. Urban Tree Health Assessment Using Airborne Hyperspectral and LiDAR Imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 26–38. [Google Scholar] [CrossRef]
- Fuentes, S.; Tongson, E.; Gonzalez Viejo, C. Urban Green Infrastructure Monitoring Using Remote Sensing from Integrated Visible and Thermal Infrared Cameras Mounted on a Moving Vehicle. Sensors 2021, 21, 295. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Sousa, J.J.; Fernandes-Silva, A. Assessing the Water Status and Leaf Pigment Content of Olive Trees: Evaluating the Potential and Feasibility of Unmanned Aerial Vehicle Multispectral and Thermal Data for Estimation Purposes. Remote Sens. 2023, 15, 4777. [Google Scholar] [CrossRef]
- Kesić, L.; Vuksanović, V.; Karaklić, V.; Vaštag, E. Variation of Leaf Water Potential and Leaf Gas Exchange Parameters of Seven Silver Linden (Tilia tomentosa Moench) Genotypes in Urban Environment. Topola/Poplar 2020, 10, 15–24. [Google Scholar] [CrossRef]
- Petrova, S.; Velcheva, I.; Nikolov, B.; Vasileva, T.; Bivolarski, V. Antioxidant Responses and Adaptation Mechanisms of Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra JF Arnold towards Urban Air Pollution. Forests 2022, 13, 1689. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lékó-Kacsova, C.; Bátori, Z.; Viczián, A.; Gulyás, Á.; Kiss, M. Complex Study of the Physiological and Microclimatic Attributes of Street Trees in Microenvironments with Small-Scale Heterogeneity. Land 2025, 14, 1775. https://doi.org/10.3390/land14091775
Lékó-Kacsova C, Bátori Z, Viczián A, Gulyás Á, Kiss M. Complex Study of the Physiological and Microclimatic Attributes of Street Trees in Microenvironments with Small-Scale Heterogeneity. Land. 2025; 14(9):1775. https://doi.org/10.3390/land14091775
Chicago/Turabian StyleLékó-Kacsova, Csenge, Zoltán Bátori, András Viczián, Ágnes Gulyás, and Márton Kiss. 2025. "Complex Study of the Physiological and Microclimatic Attributes of Street Trees in Microenvironments with Small-Scale Heterogeneity" Land 14, no. 9: 1775. https://doi.org/10.3390/land14091775
APA StyleLékó-Kacsova, C., Bátori, Z., Viczián, A., Gulyás, Á., & Kiss, M. (2025). Complex Study of the Physiological and Microclimatic Attributes of Street Trees in Microenvironments with Small-Scale Heterogeneity. Land, 14(9), 1775. https://doi.org/10.3390/land14091775