From Construction to Operation: A Public Service Ecosystem Framework for Urban Rail Transit’s Economic Impact
Abstract
1. Introduction
2. Literature Review
2.1. URT and Economic Growth
2.2. Value Creation in Public Service Ecosystems
3. Materials and Methods
3.1. Analytical and Technical Framework
3.2. Hypothesis Development
3.3. Data Collection and Sample Selection
3.4. Variable Selection and Definition
3.4.1. Dependent Variables
3.4.2. Independent Variables
3.4.3. Control Variables
3.5. Model Design
3.5.1. Construction Effect Model (Model I)
3.5.2. Operational Effect Model (Model II)
3.5.3. Linearity Testing and Robustness Analysis
3.5.4. City Tier Heterogeneity Analysis
4. Results
4.1. Descriptive Statistics
4.2. Threshold Effects of Construction Effect Model (Model I)
4.2.1. Results of Model I
4.2.2. Regional Difference Test for Construction Effect
4.2.3. Robustness Test for Model I
4.2.4. City Tier Heterogeneity Analysis for Construction Effect
4.3. Operational Effect Model Effects (Model II)
4.3.1. Results of Model II
4.3.2. Regional Difference Test for Operational Effect
4.3.3. Robustness Test for Model II
4.3.4. City Tier Heterogeneity Analysis for Operational Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Threshold Effect Value | Robustness Test | |||||
---|---|---|---|---|---|---|
Threshold | F Test | p-Value | Threshold Value | F Test | p-Value | Threshold Value |
1 | 67.950 | 0.000 | 9.328 | 50.270 | 0.000 | 9.294 |
2 | 49.450 | 0.000 | 9.294 20.934 | 36.790 | 0.047 | 9.294 20.971 |
3 | 20.960 | 0.677 | - | 21.020 | 0.717 | - |
Dependent variable: Economic Growth (PERGDPit) | |||||
---|---|---|---|---|---|
Variable | One Threshold | p-Value | Two Threshold | p-Value | |
CI | 1st-regime (β1) | 0.013 | (0.000) | 0.014 | (0.000) |
2nd-regime(β2) | 0.003 | (0.002) | 0.004 | (0.000) | |
3rd-regime (β3) | - | - | −0.002 | (0.000) | |
GOV | 0.003 | (0.022) | 0.036 | (0.016) | |
TEC | 0.006 | (0.000) | 0.009 | (0.000) | |
HUM | 1.043 | (0.301) | 0.286 | (0.246) | |
DEN | 0.207 | (0.000) | 0.231 | (0.008) | |
TRS | 1.194 | (0.003) | 0.085 | (0.024) | |
Env-PCA | −0.827 | (0.008) | −0.618 | (0.108) | |
CONSTANT | 2.105 | (0.001) | 1.975 | (0.001) | |
City Fixed-Effects (σ_u) | 2.950 | - | 2.839 | - | |
Error Term (σ_ε) | 0.878 | - | 0.823 | - | |
R2 | 0.882 | - | 0.897 | - | |
Number Of Observations | 364 | - | 364 | - |
Variable | Coefficient | p-Value | [95% Conf. Interval] | |
---|---|---|---|---|
IPR | 0.287 | (0.000) | 0.184 | 0.389 |
GOV | 0.001 | (0.001) | 0.000 | 0.002 |
TEC | 0.003 | (0.032) | 0.001 | 0.007 |
HUM | 1.989 | (0.223) | −1.219 | 5.197 |
DEN | 0.194 | (0.000) | 0.169 | 0.217 |
TRS | 1.885 | (0.012) | 0.414 | 3.669 |
Env-PCA | 0.276 | (0.005) | 0.085 | 0.467 |
Constant | 3.346 | (0.000) | 2.766 | 3.926 |
City Fixed-Effects (σ_u) | 2.676 | - | - | - |
Error Term (σ_ε) | 0.952 | - | - | - |
R2 | 0.888 | - | - | - |
Number of Observations | 364 | - | - | - |
References
- Vuchic, V.R. Urban Transit Systems and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Wenxing, L.I.; Shuai, Y. Analysis on cost of urban rail transit. J. Transp. Syst. Eng. Inf. Technol. 2012, 12, 9–14. [Google Scholar] [CrossRef]
- Siemiatycki, M. Message in a metro: Building urban rail infrastructure and image in Delhi, India. Int. J. Urban Reg. 2006, 30, 277–292. [Google Scholar] [CrossRef]
- Zhang, H. Metro and urban growth: Evidence from China. J. Transp. Geogr. 2020, 85, 102732. [Google Scholar] [CrossRef]
- Flyvbjerg, B. What you should know about megaprojects and why: An overview. Proj. Manag. J. 2014, 45, 6–19. [Google Scholar] [CrossRef]
- Chen, Y.; Whalley, A. Green infrastructure: The effects of urban rail transit on air quality. Am. Econ. J. Econ. Policy 2012, 4, 58–97. [Google Scholar] [CrossRef]
- Mottee, L.K.; Arts, J.; Vanclay, F.; Miller, F.; Howitt, R. Metro infrastructure planning in Amsterdam: How are social issues managed in the absence of environmental and social impact assessment? Impact Assess. Proj. Apprais. 2020, 38, 320–335. [Google Scholar] [CrossRef]
- Melo, P.C.; Graham, D.J.; Brage-Ardao, R. The productivity of transport infrastructure investment: A meta-analysis of empirical evidence. Reg. Sci. Urban Econ. 2013, 43, 695–706. [Google Scholar] [CrossRef]
- Ji, J.; Zou, Z.; Tian, Y. Energy and economic impacts of China’s 2016 economic investment plan for transport infrastructure construction: An input-output path analysis. J. Clean. Prod. 2019, 238, 117761. [Google Scholar] [CrossRef]
- Andersson, M.; Klaesson, J.; Larsson, J.P. How local are spatial density externalities? Neighbourhood effects in agglomeration economies. Reg. Stud. 2016, 50, 1082–1095. [Google Scholar] [CrossRef]
- Tao, Z.; Feng, X.; Li, K.; Shi, R. Impacts of urban rail transit on city growth: Evidence from China. Urban Rail Transit 2022, 8, 121–133. [Google Scholar] [CrossRef]
- Zheng, J.; Feng, C.; Xie, H.; Zhao, X.; Wu, G. Ambidextrous Leadership and Innovative Behaviors in Construction Projects: Dual-Edged Sword Effects and Social Information Processing Perspective. J. Manag. Eng. 2023, 39, 04022070. [Google Scholar] [CrossRef]
- Lee, C.; Ma, J.; Oh, K.K. Economic impact analysis on regional industries by high-speed rail investments: Application of an input-output model. Transp. Res. Rec. 2018, 2672, 247–259. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Roland-Holst, D. Infrastructure as a catalyst for regional integration, growth, and economic convergence: Scenario analysis for Asia. In From Growth to Convergence: Asia’s Next Two Decades; Palgrave Macmillan: London, UK, 2009; pp. 108–149. [Google Scholar]
- Liu, E.; Tsyvinski, A. A dynamic model of input–output networks. Rev. Econ. Stud. 2024, 91, 3608–3644. [Google Scholar] [CrossRef]
- Li, M.; Ferreira, J.P.; Court, C.D.; Meyer, D.; Li, M.; Ingwersen, W.W. StateIO-Open Source Economic Input-Output Models for the 50 States of the United States of America. Int. Reg. Sci. Rev. 2023, 46, 428–481. [Google Scholar] [CrossRef]
- Di Domenico, L.; Raberto, M.; Safarzynska, K. Resource scarcity, circular economy and the energy rebound: A macro-evolutionary input-output model. Energy Econ. 2023, 128, 107155. [Google Scholar] [CrossRef]
- Dykas, P.; Tokarski, T.; Wisła, R. The Solow Model of Economic Growth: Application to Contemporary Macroeconomic Issues; Taylor & Francis: Oxfordshire, UK, 2023. [Google Scholar]
- Yao, S.; Zhang, F.; Wang, F.; Ou, J. High-speed rail and urban economic growth in China after the global financial crisis. China World Econ. 2019, 27, 44–65. [Google Scholar] [CrossRef]
- Bruinsma, F.; Pels, E.; Priemus, H.; Rietveld, P.; Van Wee, B. Railway Development: Impacts on Urban Dynamics; Physica-Verlag: Heidelberg, Germany, 2008. [Google Scholar]
- Lee, J.K. New rail transit projects and land values: The difference in the impact of rail transit investment on different land types, values and locations. Land Use Policy 2022, 112, 105807. [Google Scholar] [CrossRef]
- Li, X.; Love, P.E.; Luo, H.; Fang, W. A systemic model for implementing land value capture to support urban rail transit infrastructure projects. Transp. Res. Part A Policy Pract. 2022, 156, 90–112. [Google Scholar]
- Osborne, S.P.; Powell, M.; Cui, T.; Strokosch, K. Value creation in the public service ecosystem: An integrative framework. Public Admin. Rev. 2022, 82, 634–645. [Google Scholar]
- Abid, M.F.; Shamim, A.; Khan, Z.; Khan, I. Value creation or value destruction: Conceptualizing the experiential nature of value-in-use. J. Consum. Behav. 2022, 21, 583–601. [Google Scholar] [CrossRef]
- Zainuddin, N.; Gordon, R. Value creation and destruction in social marketing services: A review and research agenda. J. Serv. Mark. 2020, 34, 347–361. [Google Scholar] [CrossRef]
- Echeverri, P.; Skålén, P. Value co-destruction: Review and conceptualization of interactive value formation. Mark. Theor. 2021, 21, 227–249. [Google Scholar] [CrossRef]
- Petrescu, M. From marketing to public value: Towards a theory of public service ecosystems. Public Manag. Rev. 2019, 21, 1733–1752. [Google Scholar] [CrossRef]
- Trischler, J.; Røhnebæk, M.; Edvardsson, B.; Tronvoll, B. Advancing public service logic: Moving towards an ecosystemic framework for value creation in the public service context. Public Manag. Rev. 2023, 1–29. [Google Scholar] [CrossRef]
- Ojasalo, J.; Kauppinen, S. Public value in public service ecosystems. J. Nonprofit Public Sect. Mark. 2024, 36, 179–207. [Google Scholar] [CrossRef]
- Song, Z. Economic growth and carbon emissions: Estimation of a panel threshold model for the transition process in China. J. Clean. Prod. 2021, 278, 123773. [Google Scholar] [CrossRef]
- Breuer, M.; DeHaan, E.D. Using and interpreting fixed effects models. J. Acc. Res. 2024, 62, 1183–1226. [Google Scholar] [CrossRef]
- Calderón, C.; Servén, L. Infrastructure, Growth, and Inequality: An Overview; World Bank Policy Research Working Paper; World Bank Group: Washington, DC, USA, 2014. [Google Scholar]
- Romano, P.R.; Sampaio, R.M.B. Road concessions: Evidence of the effects of improving the transport infrastructure on economic development in Brazil. Transp. Policy 2023, 142, 115–124. [Google Scholar] [CrossRef]
- Elburz, Z.; Nijkamp, P.; Pels, E. Public infrastructure and regional growth: Lessons from meta-analysis. J. Transp. Geogr. 2017, 58, 1–8. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Hochman, G.; Song, Z. Infrastructure, Economic Growth, and Poverty: A Review; World Bank Policy Research Working Paper; World Bank Group: Washington, DC, USA, 2020. [Google Scholar]
- Timilsina, G.; Stern, D.I.; Das, D.K. Physical infrastructure and economic growth. Appl. Econ. 2024, 56, 2142–2157. [Google Scholar] [CrossRef]
- Lin, D.; Broere, W.; Cui, J. Metro systems and urban development: Impacts and implications. Tunn. Undergr. Space Technol. 2022, 125, 104509. [Google Scholar] [CrossRef]
- Hu, C.; Cai, D.; Wen, Y. Does subway mileage affect urban housing prices? An economic growth perspective. Appl. Econ. 2024, 56, 6158–6170. [Google Scholar] [CrossRef]
- Lin, D.; Nelson, J.D.; Beecroft, M.; Cui, J. An overview of recent developments in China’s metro systems. Tunn. Undergr. Space Technol. 2021, 111, 103783. [Google Scholar] [CrossRef]
- Knowles, R.D.; Ferbrache, F. Evaluation of wider economic impacts of light rail investment on cities. J. Transp. Geogr. 2016, 54, 430–439. [Google Scholar] [CrossRef]
- Gomez-Ibanez, J.A. A dark side to light rail? The experience of three new transit systems. J. Am. Plan. Assoc. 1985, 51, 337–351. [Google Scholar] [CrossRef]
- Chatman, D.G.; Tulach, N.K.; Kim, K. Evaluating the economic impacts of light rail by measuring home appreciation: A first look at New Jersey’s River Line. Urban Stud. 2012, 49, 467–487. [Google Scholar] [CrossRef]
- Yang, J.; Su, P.; Cao, J. On the importance of Shenzhen metro transit to land development and threshold effect. Transp. Policy 2020, 99, 1–11. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, H.; Han, L.; Zhang, A. The effect of a subway on house prices: Evidence from Shanghai. Real Estate Econ. 2021, 49, 199–234. [Google Scholar] [CrossRef]
- Gyourko, J.; Shen, Y.; Wu, J.; Zhang, R. Land finance in China: Analysis and review. China Econ. Rev. 2022, 76, 101868. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Bobylev, N.; Li, S.; Liu, J. Coupling Coordination of “Urban Rail Transit—Social Economy” Composite System. Infrastructures 2022, 7, 56. [Google Scholar] [CrossRef]
- Li, W.; Bai, X.; Yang, D.; Hou, Y. Maritime connectivity, transport infrastructure expansion and economic growth: A global perspective. Transp. Res. Part A Policy Pract. 2023, 170, 103609. [Google Scholar] [CrossRef]
- Liu, J.; Qian, Y.; Song, S.; Duan, R. Industrial symbiotic agglomeration and green economic growth: A spatial difference-in-differences approach. J. Clean. Prod. 2022, 364, 132560. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, D.; Kong, Q.; Tan, F. Digital infrastructure and economic growth: Evidence from corporate investment efficiency. Int. Rev. Econ. Financ. 2025, 98, 103854. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. The four service marketing myths: Remnants of a goods-based, manufacturing model. J. Serv. Res. 2004, 6, 324–335. [Google Scholar] [CrossRef]
- Grönroos, C.; Voima, P. Critical service logic: Making sense of value creation and co-creation. J. Acad. Mark. Sci. 2013, 41, 133–150. [Google Scholar] [CrossRef]
- Grönroos, C.; Ravald, A. Service as business logic: Implications for value creation and marketing. J. Serv. Manag. 2011, 22, 5–22. [Google Scholar] [CrossRef]
- Wu, G.; Zhu, Y.; Hu, Z. A bibliometric review of research on interorganizational conflicts in the construction industry: 1989–2021. Int. J. Confl. Manag. 2023, 34, 181–212. [Google Scholar] [CrossRef]
- Järvi, H.; Kähkönen, A.; Torvinen, H. When value co-creation fails: Reasons that lead to value co-destruction. Scand. J. Manag. 2018, 34, 63–77. [Google Scholar] [CrossRef]
- Windsor, D. Value creation theory: Literature review and theory assessment. In Stakeholder Management; Emerald Publishing Limited: Leeds, UK, 2017; pp. 75–100. [Google Scholar]
- Hu, Z.; Wu, G.; Zhao, X.; Zuo, J.; Wen, S. How does the strength of ties influence relationship quality in Chinese megaprojects? The mediating role of contractual flexibility. Balt. J. Manag. 2021, 16, 366–385. [Google Scholar] [CrossRef]
- Erridge, A.; Greer, J. Partnerships and public procurement: Building social capital through supply relations. Public Adm. 2002, 80, 503–522. [Google Scholar] [CrossRef]
- Qiu, L.; Sun, X.; Tu, Y.; Zhao, Y. Measurement and Optimization of Metro Network Service Efficacy. Int. J. Crowd Sci. 2024, 8, 149–158. [Google Scholar] [CrossRef]
- Hodgkinson, I.R.; Hannibal, C.; Keating, B.W.; Chester Buxton, R.; Bateman, N. Toward a public service management: Past, present, and future directions. J. Serv. Manag. 2017, 28, 998–1023. [Google Scholar] [CrossRef]
- Gerbaud, V. PSE prospective: Paradigm transition towards Complex Thought in a global world under pressure. Comput. Chem. Eng. 2023, 175, 108274. [Google Scholar] [CrossRef]
- Zhang, Y.; Dilanchiev, A. Economic recovery, industrial structure and natural resource utilization efficiency in China: Effect on green economic recovery. Resour. Policy 2022, 79, 102958. [Google Scholar] [CrossRef]
- Kong, Q.; Li, R.; Jiang, X.; Sun, P.; Peng, D. Has transportation infrastructure development improved the quality of economic growth in China’s cities? A quasi-natural experiment based on the introduction of high-speed rail. Res. Int. Bus. Financ. 2022, 62, 101726. [Google Scholar] [CrossRef]
- Osborne, S.P.; Nasi, G.; Powell, M. Beyond co-production: Value creation and public services. Public Adm. 2021, 99, 641–657. [Google Scholar] [CrossRef]
- Osborne, S.; Ishihara, T.; Bianchi, C.; Cucciniello, M.; Nasi, G. Debate: Place-based public service ecosystems and the performance of local public services. Public Money Manag. 2025, 45, 592–596. [Google Scholar] [CrossRef]
- Cui, T.; Osborne, S.P. Unpacking value destruction at the intersection between public and private value. Public Adm. 2023, 101, 1207–1226. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, P.; Ni, S. Assessment of the impacts of urban rail transit on metropolitan regions using system dynamics model. Transp. Res. Procedia 2014, 4, 521–534. [Google Scholar] [CrossRef]
- Lähteenmäki, I.; Nätti, S. Obstacles to upgrading customer value-in-use in retail banking. Int. J. Bank Mark. 2013, 31, 334–347. [Google Scholar] [CrossRef]
- Parihar, M.; Dasari, N.; Bhagwat, K. Smart city solution: Enhancing capacity utilization of mass rapid transit system (MRTS) for economic viability with special reference to jaipur metro rail network. In Smart Systems: Innovations in Computing: Proceedings of SSIC 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 55–67. [Google Scholar]
- Zeng, Z.; Zhao, L.; Wang, X. Does improved transportation promote innovation? evidence from China’s cities. Appl. Econ. 2022, 54, 2643–2657. [Google Scholar] [CrossRef]
- Deng, X.; Liang, L.; Wu, F.; Wang, Z.; He, S. A review of the balance of regional development in China from the perspective of development geography. J. Geogr. Sci. 2022, 32, 3–22. [Google Scholar] [CrossRef]
- Luo, S.; Yimamu, N.; Li, Y.; Wu, H.; Irfan, M.; Hao, Y. Digitalization and sustainable development: How could digital economy development improve green innovation in China? Bus. Strat. Environ. 2023, 32, 1847–1871. [Google Scholar] [CrossRef]
- Lin, X.; Niu, B.; Liu, W.; Zhong, J.; Dou, Q. Land premium effects of urban rail transit and the associated policy insights for TOD: A case of Ningbo, China. Urban Rail Transit 2022, 8, 157–166. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Wu, G. The network governance of urban renewal: A comparative analysis of two cities in China. Land Use Policy 2021, 106, 105448. [Google Scholar] [CrossRef]
- Ozili, P.K.; Ademiju, A.; Rachid, S. Impact of financial inclusion on economic growth: Review of existing literature and directions for future research. Int. J. Soc. Econ. 2022, 50, 1105–1122. [Google Scholar] [CrossRef]
- Chorus, P.; Bertolini, L. An application of the node place model to explore the spatial development dynamics of station areas in Tokyo. J. Transp. Land Use 2011, 4, 45–58. [Google Scholar] [CrossRef]
- López-Morales, E.; Sanhueza, C.; Herrera, N.; Espinoza, S.; Mosso, V. Land and housing price increases due to metro effect: An empirical analysis of Santiago, Chile, 2008–2019. Land Use Policy 2023, 132, 106793. [Google Scholar] [CrossRef]
- Markus, F. Competition Between Network Carriers and Low-Cost Carriers—Retreat Battle or Breakthrough to A New Level of Efficiency? Routledge: Oxfordshire, UK, 2017; pp. 293–299. [Google Scholar]
- Efthimiou, S.G. The Economic Adjustment and Regional Development of the Tourism Sector through Foreign Direct Investments. Theor. Econ. Lett. 2025, 15, 821–850. [Google Scholar] [CrossRef]
- Cui, J.; Nelson, J.D.; Beecroft, M.; Lin, D. Subway systems and tourism: An overview and implications. Res. Transp. Bus. Manag. 2024, 57, 101205. [Google Scholar] [CrossRef]
- Gwilliam, K. Urban transport in developing countries. Transp. Rev. 2003, 23, 197–216. [Google Scholar] [CrossRef]
- Mao, R.; Bao, Y.; Duan, H.; Liu, G. Global urban subway development, construction material stocks, and embodied carbon emissions. Humanit. Soc. Sci. Commun. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Xu, M.; Shang, S. Research on the Subway Social Design of Single Youths in Shanghai. In International Conference on Human-Computer Interaction, 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 231–244. [Google Scholar]
- CAMET. Urban Rail Transit Statistics and Analysis Report 2021; China Urban Rail Transit Association: Beijing, China, 2022. [Google Scholar]
- Niedzielski, T.; Halicki, M. Improving linear interpolation of missing hydrological data by applying integrated autoregressive models. Water Resour. Manag. 2023, 37, 5707–5724. [Google Scholar] [CrossRef]
- Torres, M.N.; Fontecha, J.E.; Walteros, J.L.; Zhu, Z.; Ahmed, Z.; Rodríguez, J.P.; Rabideau, A.J. City-scale optimal location planning of Green Infrastructure using piece-wise linear interpolation and exact optimization methods. J. Hydrol. 2021, 601, 126540. [Google Scholar] [CrossRef]
- Cheng, K.; Young, D.S. An approach for specifying trimming and Winsorization Cutoffs. J. Agric. Biol. Environ. Stat. 2023, 28, 299–323. [Google Scholar] [CrossRef]
- Chen, E.; Liu, Y.; Yang, M.; Ye, Z.; Nie, Y.M. The sustainability appeal of urban rail transit. Transp. Res. Part A Policy Pract. 2024, 186, 104152. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, J.; Gong, X.; He, Y.; Qiu, S. Analyzing influencing factors of transfer passenger flow of urban rail transit: A new approach based on nested logit model considering transfer choices. Int. J. Environ. Res. Public Health 2021, 18, 8462. [Google Scholar] [CrossRef] [PubMed]
- Pojani, D.; Stead, D. Sustainable urban transport in the developing world: Beyond megacities. Sustainability 2015, 7, 7784–7805. [Google Scholar] [CrossRef]
- Shen, Q. Under What Conditions Can Urban Rail Transit Induce Higher Density? Evidence from Four Metropolitan Areas in the United States, 1990–2010; University of Michigan: Ann Arbor, MI, USA, 2013. [Google Scholar]
- Daraio, C.; Diana, M.; Di Costa, F.; Leporelli, C.; Matteucci, G.; Nastasi, A. Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research. Eur. J. Oper. Res. 2016, 248, 1–20. [Google Scholar] [CrossRef]
- Meade, J.E. The Theory of Economic Externalities: The Control of Environmental Pollution and Similar Social Costs; Martinus Nijhoff Publishers: Leiden, The Netherlands, 2024; Volume 2. [Google Scholar]
- Ma’Rifah, A. The effect of infrastructure development on economic growth. Effic. Indones. J. Dev. Econ. 2022, 5, 230–241. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M. On the relationship between transportation infrastructure and economic development in China. Res. Transp. Econ. 2021, 88, 100947. [Google Scholar] [CrossRef]
- Soubbotina, T.P.; Sheram, K. Beyond Economic Growth: Meeting the Challenges of Global Development; World Bank Publications: Washington, DC, USA, 2000. [Google Scholar]
- Dellink, R.; Chateau, J.; Lanzi, E.; Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 2017, 42, 200–214. [Google Scholar] [CrossRef]
- McDonald, P.F.; Temple, J. Immigration, Labour Supply and Per Capita Gross Domestic Product; Australia 2010–2050; Department of Immigration and Citizenship Canberra: Canberra, Australia, 2010.
- Stiglitz, J.E.; Sen, A.; Fitoussi, J. The Measurement of Economic Performance and Social Progress Revisited; OFCE France: Paris, France, 2009; Volume 33. [Google Scholar]
- Hickel, J.; Kallis, G. Is green growth possible? New Polit. Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Aslam, B.; Hu, J.; Shahab, S.; Ahmad, A.; Saleem, M.; Shah, S.S.A.; Javed, M.S.; Aslam, M.K.; Hussain, S.; Hassan, M. The nexus of industrialization, GDP per capita and CO2 emission in China. Environ. Technol. Innov. 2021, 23, 101674. [Google Scholar] [CrossRef]
- Lu, K.; Han, B.; Lu, F.; Wang, Z. Urban rail transit in China: Progress report and analysis (2008–2015). Urban Rail Transit 2016, 2, 93–105. [Google Scholar] [CrossRef]
- Tornabene, S.; Nilsson, I. Rail transit investments and economic development: Challenges for small businesses. J. Transp. Geogr. 2021, 94, 103087. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, M.; Hao, S.; Wei, M. Investment risk assessment of social capital in urban rail transit Public-Private Partnership projects. J. Asian Arch. Build. 2025, 24, 298–316. [Google Scholar] [CrossRef]
- Kraatz, J.A.; Sanchez, A.X. R&D Investment and Impact in the Global Construction Industry; Routledge: Oxfordshire, UK, 2014. [Google Scholar]
- Alhassan, J.A.K.; Anciaes, P. Public transport investments as generators of economic and social activity. J. Transp. Health 2025, 41, 101989. [Google Scholar] [CrossRef]
- Yang, X.; Xue, Q.; Ding, M.; Wu, J.; Gao, Z. Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data. Int. J. Prod. Econ. 2021, 231, 107920. [Google Scholar] [CrossRef]
- Butkus, M.; Mačiulytė-Šniukienė, A.; Matuzevičiūtė, K. Transport Infrastructure Investments as a Factor of Economic Growth of European Union Countries. Taltech J. Eur. Stud. 2023, 13, 150–176. [Google Scholar] [CrossRef]
- He, C. Industrial Geography in Contemporary China; Routledge: Oxfordshire, UK, 2022. [Google Scholar]
- Rodríguez-Pose, A.; Crescenzi, R. Research and development, spillovers, innovation systems, and the genesis of regional growth in Europe. Reg. Stud. 2008, 42, 51–67. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.; Zheng, H. Technology investment strategy for a competitive manufacturer in the presence of technology spillover. IEEE Trans. Eng. Manag. 2021, 70, 1162–1173. [Google Scholar] [CrossRef]
- Liu, Z.; Tong, Z.; Zhang, Z. Government expenditure structure, technological progress and economic growth. Int. J. Emerg. Mark. 2024, 19, 3729–3767. [Google Scholar] [CrossRef]
- Gruzina, Y.; Firsova, I.; Strielkowski, W. Dynamics of human capital development in economic development cycles. Economies 2021, 9, 67. [Google Scholar] [CrossRef]
- Bloom, D.E.; Finlay, J.E. Demographic change and economic growth in Asia. Asian Econ. Policy Rev. 2009, 4, 45–64. [Google Scholar] [CrossRef]
- Lee, R.; Mason, A.; Network, N.; Lee, R.; Mason, A.; Amporfu, E.; An, C.; Bixby, L.R.; Bravo, J.; Bucheli, M. Is low fertility really a problem? Population aging, dependency, and consumption. Science 2014, 346, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Banister, J.; Bloom, D.E.; Rosenberg, L. Population aging and economic growth in China. In The Chinese Economy: A New Transition; Palgrave Macmillan: London, UK, 2012; pp. 114–149. [Google Scholar]
- Poku, K.; Opoku, E.; Agyeiwaa Ennin, P. The influence of government expenditure on economic growth in Ghana: An Ardl approach. Cogent Econ. Financ. 2022, 10, 2160036. [Google Scholar] [CrossRef]
- Gurdal, T.; Aydin, M.; Inal, V. The relationship between tax revenue, government expenditure, and economic growth in G7 countries: New evidence from time and frequency domain approaches. Econ. Chang. Restruct. 2021, 54, 305–337. [Google Scholar] [CrossRef]
- Melitz, M.J.; Ottaviano, G.I. Market size, trade, and productivity. Rev. Econ. Stud. 2008, 75, 295–316. [Google Scholar] [CrossRef]
- Wen, X.; Si, B.; Wei, Y.; Cui, H. Resilience assessment of urban rail transit systems: A literature review. Public Transp. 2025, 1–25. [Google Scholar] [CrossRef]
- Zou, L.; Shen, J.H.; Zhang, J.; Lee, C.C. What is the rationale behind China’s infrastructure investment under the Belt and Road Initiative. J. Econ. Surv. 2022, 36, 605–633. [Google Scholar] [CrossRef]
- Muvawala, J.; Sebukeera, H.; Ssebulime, K. Socio-economic impacts of transport infrastructure investment in Uganda: Insight from frontloading expenditure on Uganda’s urban roads and highways. Res. Transp. Econ. 2021, 88, 100971. [Google Scholar] [CrossRef]
- Jiao, L.; Luo, F.; Wu, F.; Zhang, Y.; Huo, X.; Wu, Y. Can the opening of urban rail transit improve urban air quality? Evidence from 94 lines in China. Environ. Impact Assess. 2022, 97, 106857. [Google Scholar] [CrossRef]
- Gendron-Carrier, N.; Gonzalez-Navarro, M.; Polloni, S.; Turner, M.A. Subways and urban air pollution. Am. Econ. J. Appl. Econ. 2022, 14, 164–196. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Gan, C.; Voda, M.; Wang, K.; Chen, L.; Ye, J. Spatial network structure of the tourism economy in urban agglomeration: A social network analysis. J. Hosp. Tour. Manag. 2021, 47, 124–133. [Google Scholar] [CrossRef]
- Lu, J.; Li, B.; Li, H.; Al-Barakani, A. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities 2021, 108, 102974. [Google Scholar] [CrossRef]
- An, S.; Ahn, K.; Bae, J.; Song, Y. Economic impacts of a subway system: Exploring local contexts in a metropolitan area. Res. Transp. Bus. Manag. 2024, 56, 101188. [Google Scholar] [CrossRef]
- Qiang, G.; Cao, D.; Wu, G.; Zhao, X.; Zuo, J. Dynamics of Collaborative Networks for Green Building Projects: Case Study of Shanghai. J. Manag. Eng. 2021, 37, 5021001. [Google Scholar] [CrossRef]
- Wang, Q. Fixed-effect panel threshold model using Stata. Stata J. 2015, 15, 121–134. [Google Scholar] [CrossRef]
- Tiba, S. Modeling the nexus between resources abundance and economic growth: An overview from the PSTR model. Resour. Policy 2019, 64, 101503. [Google Scholar] [CrossRef]
- Liu, Y.; Ali, A.; Chen, Y.; She, X. The effect of transport infrastructure (road, rail, and air) investments on economic growth and environmental pollution and testing the validity of EKC in China, India, Japan, and Russia. Environ. Sci. Pollut. Res. 2023, 30, 32585–32599. [Google Scholar] [CrossRef] [PubMed]
- GB/T 51328-2018; Standard for Urban Comprehensive Transport System Planning. Ministry of Housing and Urban-Rural Development China: Beijing, China, 2018.
- Cervero, R. Transit-Oriented Development in the United States: Experiences, Challenges, and Prospects; The National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Chatman, D.G.; Noland, R.B. Do public transport improvements increase agglomeration economies? A review of literature and an agenda for research. Transp. Rev. 2011, 31, 725–742. [Google Scholar] [CrossRef]
- Credit, K. Transit-oriented economic development: The impact of light rail on new business starts in the Phoenix, AZ Region, USA. Urban Stud. 2018, 55, 2838–2862. [Google Scholar] [CrossRef]
- Crampton, G. Economic Development Impacts of Urban Rail Transport. In Proceedings of the European Regional Science Association (ERSA) Conference, Jyvaskyla, Finland, 27–30 August 2003. [Google Scholar]
No. | City | URT System Name | Region | Year Opened | Length (km) | Number of Lines |
---|---|---|---|---|---|---|
1 | Beijing | Beijing Subway | Eastern | 1969 | 696.364 | 24 |
2 | Tianjin | Tianjin Rail Transit | Eastern | 1984 | 231.998 | 6 |
3 | Shanghai | Shanghai Metro | Eastern | 1993 | 694.890 | 18 |
4 | Guangzhou | Guangzhou Metro | Eastern | 1997 | 504.610 | 16 |
5 | Changchun | Changchun Rail Transit | Eastern | 2002 | 100.17 | 5 |
6 | Dalian | Dalian Metro | Eastern | 2003 | 159.95 | 4 |
7 | Shenzhen | Shenzhen Metro | Eastern | 2004 | 411.363 | 12 |
8 | Nanjing | Nanjing Metro | Eastern | 2005 | 177.140 | 12 |
9 | Shenyang | Shenyang Metro | Eastern | 2010 | 116.566 | 10 |
10 | Suzhou | Suzhou Metro | Eastern | 2012 | 165.936 | 6 |
11 | Hangzhou | Hangzhou Metro | Eastern | 2012 | 307.180 | 7 |
12 | Harbin | Harbin Metro | Eastern | 2013 | 30.600 | 2 |
13 | Ningbo | Ningbo Rail Transit | Eastern | 2014 | 154.550 | 5 |
14 | Wuxi | Wuxi Metro | Eastern | 2014 | 89.420 | 3 |
15 | Qingdao | Qingdao Metro | Eastern | 2015 | 249.350 | 6 |
16 | Fuzhou | Fuzhou Metro | Eastern | 2016 | 54.918 | 2 |
17 | Wuhan | Wuhan Metro | Central-Western | 2004 | 337.843 | 12 |
18 | Chongqing | Chongqing Rail Transit | Central-Western | 2005 | 341.730 | 9 |
19 | Chengdu | Chengdu Metro | Central-Western | 2010 | 518.441 | 13 |
20 | Xi’an | Xi’an Metro | Central-Western | 2011 | 214.483 | 8 |
21 | Kunming | Kunming Rail Transit | Central-Western | 2012 | 138.390 | 5 |
22 | Zhengzhou | Zhengzhou Metro | Central-Western | 2013 | 204.038 | 7 |
23 | Changsha | Changsha Metro | Central-Western | 2014 | 142.448 | 6 |
24 | Nanchang | Nanchang Metro | Central-Western | 2015 | 88.710 | 3 |
25 | Nanning | Nanning Rail Transit | Central-Western | 2016 | 108.200 | 5 |
26 | Hefei | Hefei Metro | Central-Western | 2016 | 114.780 | 4 |
Variable Name | Meaning | Description |
---|---|---|
PERGDP | GDP per capita | With 2007 as the base period; data source: Statistical database of China Economic Network |
CI | Total annual investment in URT construction | It does not include some projects approved by local governments; data source: Annual Statistics and analysis report of URT in China |
DEN | URT density | URT kilometer per 10,000 people; data source: Annual Statistics and analysis report of URT in China; China City Statistical Yearbook |
TEC | Investment in science and technology | Expenditures on science and technology in municipal local general public budget revenue and expenditure status; data source: China City Statistical Yearbook |
HUM | Human capital | The ratio of the working population to the annual average population of the city; data source: China City Statistical Yearbook |
GOV | Government purchase | Municipal local general public budget expenditures; data source: China City Statistical Yearbook |
IPR | Passenger flow intensity | The ratio of annual ridership to mileage of URT; data source: Annual Statistics and analysis report of URT in China; China City Statistical Yearbook; Official Website of the National Bureau of Statistics |
TRS | Total retail sales of consumer goods | Expressed in terms of total retail sales of consumer goods; data source: China City Statistical Yearbook |
ENV | Environmental index | The proportion of days with air quality reaching or exceeding Level II (API index less than or equal to 100); data source: China City Statistical Yearbook |
Variable | PERGDP | CI | IPR | DEN | TEC | HUM | GOV | TRS | ENV |
---|---|---|---|---|---|---|---|---|---|
Mean | 7.758 | 101.094 | 1.885 | 9.199 | 61.600 | 0.186 | 1395.475 | 0.384 | 0.802 |
Median | 7.300 | 67.695 | 1.441 | 7.080 | 25.688 | 0.173 | 892.651 | 0.292 | 0.845 |
Std. Dev | 3.436 | 100.818 | 1.895 | 9.240 | 91.309 | 0.064 | 1474.779 | 0.298 | 0.164 |
Min | 1.320 | 0.980 | 0.000 | 0.000 | 1.706 | 0.082 | 116.860 | 0.044 | 0.140 |
Max | 16.590 | 653.300 | 7.292 | 41.530 | 554.982 | 0.546 | 8351.536 | 1.590 | 1.000 |
Skewness | 0.507 | 2.200 | 0.830 | 1.055 | 2.774 | 1.374 | 2.507 | 1.705 | −1.356 |
Kurtosis | 2.592 | 9.844 | 2.701 | 3.582 | 11.332 | 5.722 | 9.798 | 6.068 | 5.084 |
Jarque-Bera | 18.150 | 1004.000 | 43.140 | 72.710 | 1520.000 | 226.800 | 1082.000 | 319.100 | 177.400 |
Prob. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Observations | 364.000 | 364.000 | 364.000 | 364.000 | 364.000 | 364.000 | 364.000 | 364.000 | 364.000 |
Threshold Effect Value | Robustness Test | |||||
---|---|---|---|---|---|---|
Threshold | F Test | p-Value | Threshold Value | F Test | p-Value | Threshold Value |
1 | 69.330 | 0.000 | 12.539 | 66.570 | 0.000 | 9.328 |
2 | 50.740 | 0.000 | 9.294 21.347 | 23.310 | 0.070 | 9.328 21.347 |
3 | 27.360 | 0.827 | - | 35.920 | 0.593 | - |
Dependent Variable: Economic Growth (PERGDPit) | |||||
---|---|---|---|---|---|
Variable | One Threshold | p-Value | Two Threshold | p-Value | |
(1) | |||||
CI | 1st regime (β1) | 0.011 | (0.000) | 0.023 | (0.000) |
2nd regime (β2) | 0.002 | (0.036) | 0.013 | (0.000) | |
3nd regime (β3) | — | — | 0.003 | (0.000) | |
GOV | 0.001 | (0.000) | 0.001 | (0.000) | |
TEC | 0.004 | (0.015) | 0.005 | (0.001) | |
HUM | 1.577 | (0.312) | 2.161 | (0.128) | |
DEN | 0.213 | (0.000) | 0.265 | (0.000) | |
TRS | 1.546 | (0.033) | 1.477 | (0.024) | |
ENV | −0.985 | (0.016) | −0.418 | (0.264) | |
CONSTANT | 4.004 | (0.000) | 3.419 | (0.000) | |
City Fixed-Effects (σ_u) | 2.443 | — | 2.456 | — | |
Error Term (σ_ε) | 0.906 | — | 0.848 | — | |
R2 | 0.874 | — | 0.890 | — | |
Number of Observations | 364 | — | 364 | — | |
(2) | |||||
CI | 1st regime (β1) | 0.011 | (0.000) | 0.024 | (0.000) |
2nd regime (β2) | 0.002 | (0.046) | 0.013 | (0.000) | |
3rd regime (β3) | — | — | 0.003 | (0.000) | |
GOV | 0.001 | (0.000) | 0.001 | (0.000) | |
TEC | 0.004 | (0.025) | 0.005 | (0.000) | |
HUM | 2.798 | (0.061) | 2.681 | (0.046) | |
DEN | 0.214 | (0.000) | 0.267 | (0.000) | |
TRS | 1.527 | (0.037) | 1.467 | (0.001) | |
CONSTANT | 2.937 | (0.000) | 2.731 | (0.000) | |
City Fixed-Effects (σ_u) | 2.453 | — | 2.466 | — | |
Error Term (σ_ε) | 0.913 | — | 0.850 | — | |
R2 | 0.872 | — | 0.889 | — | |
Number of Observations | 364 | — | 364 | — |
Eastern China | Central and Western China | |||||||
---|---|---|---|---|---|---|---|---|
Threshold | F Test | p-Value | Threshold Value | CI Coefficients | F Test | p-Value | Threshold Value | CI Coefficients |
1 | 71.210 | 0.000 | 16.620 | 0.015 | 38.010 | 0.010 | 6.576 | 0.013 |
0.004 | 0.001 | |||||||
2 | 40.700 | 0.000 | 9.294 17.934 | 0.017 | 27.870 | 0.023 | 6.576 20.369 | 0.024 |
0.027 | 0.010 | |||||||
0.009 | −0.001 | |||||||
3 | 12.430 | 0.673 | 28.500 | 0.763 |
Robustness Test (Lag 2) | Robustness Test (Lag 3) | Robustness Test (Dependent Variable: Innovation Index) | |||||||
---|---|---|---|---|---|---|---|---|---|
Threshold | F Test | p-Value | Threshold Value | F Test | p-Value | Threshold Value | F Test | p-Value | Threshold Value |
1 | 54.050 | 0.007 | 11.329 | 45.730 | 0.010 | 3.899 | 84.670 | 0.000 | 10.193 |
2 | 41.990 | 0.007 | 3.799 11.329 | 30.640 | 0.020 | 3.799 11.350 | 34.650 | 0.023 | 10.193 25.777 |
3 | 20.290 | 0.730 | - | 15.640 | 0.020 | - | 26.120 | 0.967 | - |
Variable | Coefficient | Robust SE | p-Value |
---|---|---|---|
L.PERGDP | 0.872 *** | 0.042 | 0 |
CI | 0.003 ** | 0.001 | 0.02 |
Test | Statistic | p-Value | |
AR (1) | Z = −2.15 | 0.032 | |
AR (2) | Z = 1.24 | 0.215 | |
Hansen | χ2 = 18.22 | 0.287 | |
Number of Instruments | 28 | ||
First-Stage F-Statistic | 23.5 |
First-Tier Cities | Second-Tier Cities | |||||||
---|---|---|---|---|---|---|---|---|
Threshold | F Test | p-Value | Threshold Value | CI Coefficients | F Test | p-Value | Threshold Value | CI Coefficients |
1 | 31.34 | 0.000 | 21.905 | 0.015 | 20.39 | 0.012 | 9.294 | 0.018 |
−0.031 | 0.009 | |||||||
2 | 7.96 | 0.013 | 9.464 21.905 | 0.018 | 14.08 | 0.018 | 3.611 9.294 | 0.028 |
0.026 | 0.011 | |||||||
−0.033 | −0.098 | |||||||
3 | - | - | - | - | - | - | - | - |
Variable | Coefficient | p-Value | [95% Conf. Interval] | |
---|---|---|---|---|
IPR | 0.308 | (0.000) | 0.221 | 0.396 |
GOV | 0.001 | (0.000) | 0.000 | 0.001 |
TEC | 0.003 | (0.085) | 0.000 | 0.007 |
HUM | 2.584 | (0.024) | −0.623 | 5.792 |
DEN | 0.194 | (0.000) | 0.169 | 0.219 |
TRS | 1.945 | (0.014) | 0.462 | 3.429 |
ENV | −0.821 | (0.064) | −1.689 | 0.048 |
Constant | 3.813 | (0.000) | 2.753 | 4.873 |
City Fixed-Effects (σ_u) | 2.662 | - | - | - |
Error Term (σ_ε) | 0.959 | - | - | - |
R2 | 0.858 | - | - | - |
Number of Observations | 364 | - | - | - |
Eastern China | Central and Western China | |||
---|---|---|---|---|
Variable | Coefficient | p-Value | Coefficient | p-Value |
IPR | 0.323 | (0.001) | 0.304 | (0.000) |
GOV | 0.001 | (0.031) | 0.001 | (0.004) |
TEC | 0.001 | (0.774) | 0.020 | (0.000) |
HUM | 6.417 | (0.008) | −1.146 | (0.550) |
DEN | 0.184 | (0.000) | 0.148 | (0.000) |
TRS | 3.657 | (0.004) | −0.046 | (0.961) |
ENV | −0.033 | (0.957) | −1.667 | (0.005) |
Constant | 2.434 | (0.004) | 4.908 | (0.000) |
City Fixed-Effects (σ_u) | 3.138 | - | 1.850 | - |
Error Term (σ_ε) | 0.992 | - | 0.837 | - |
R2 | 0.863 | - | 0.878 | - |
Number of Observations | 364 | - | 364 | - |
Variable | Coefficient | Robust SE | p-Value |
---|---|---|---|
L.PERGDP | 1.063 *** | 0.026 | 0 |
IPR | 0.423 ** | 0.230 | 0.048 |
Test | Statistic | p-Value | |
AR (1) | Z = −2.69 | 0.007 | |
AR (2) | Z = −1.00 | 0.299 | |
Hansen | χ2 = 4.9 | 0.086 | |
Number of Instruments | 25 |
First-Tier Cities | Second-Tier Cities | |||
---|---|---|---|---|
Variable | Coefficient | p-Value | Coefficient | p-Value |
IPR | 0.332 | (0.001) | 0.301 | (0.005) |
GOV | 0.001 | (0.024) | 0.003 | (0.000) |
TEC | 0.010 | (0.000) | 0.011 | (0.032) |
HUM | 6.442 | (0.008) | 16.477 | (0.000) |
DEN | 0.201 | (0.000) | 0.110 | (0.000) |
TRS | 3.510 | (0.020) | 2.981 | (0.000) |
ENV | −0.036 | (0.469) | 1.149 | (0.026) |
Constant | 3.032 | (0.000) | 2.014 | (0.013) |
City Fixed-Effects (σ_u) | 2.896 | - | 1.839 | - |
Error Term (σ_ε) | 0.708 | - | 0.682 | - |
R2 | 0.941 | - | 0.917 | - |
Number of Observations | 140 | - | 168 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Wu, G.; Hu, Z. From Construction to Operation: A Public Service Ecosystem Framework for Urban Rail Transit’s Economic Impact. Land 2025, 14, 1875. https://doi.org/10.3390/land14091875
Xia F, Wu G, Hu Z. From Construction to Operation: A Public Service Ecosystem Framework for Urban Rail Transit’s Economic Impact. Land. 2025; 14(9):1875. https://doi.org/10.3390/land14091875
Chicago/Turabian StyleXia, Fei, Guangdong Wu, and Zhibin Hu. 2025. "From Construction to Operation: A Public Service Ecosystem Framework for Urban Rail Transit’s Economic Impact" Land 14, no. 9: 1875. https://doi.org/10.3390/land14091875
APA StyleXia, F., Wu, G., & Hu, Z. (2025). From Construction to Operation: A Public Service Ecosystem Framework for Urban Rail Transit’s Economic Impact. Land, 14(9), 1875. https://doi.org/10.3390/land14091875