Causes and Controlling Factors of Valley Bottom Gullies
Abstract
:1. Introduction
2. Materials and Methods
3. Literature Findings and Discussion
3.1. Overview
3.2. Factors Related to Valley Bottom Gully Formation
3.2.1. Slope Gradient and Drainage Area
3.2.2. Topographic Gully Threshold Indices
3.2.3. Precipitation
3.2.4. Groundwater/Surface Runoff
3.2.5. Land-Use
3.2.6. Land-Use Change
3.2.7. Soil
3.2.8. Alluvium and Colluvium
3.3. Soil Loss
3.4. Conservation Measures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Billi, P.; Dramis, F. Geomorphological investigation on gully erosion in the Rift Valley and the northern highlands of Ethiopia. Catena 2003, 50, 353–368. [Google Scholar] [CrossRef]
- Ionita, I.; Fullen, M.A.; Zgłobicki, W.; Poesen, J. Gully erosion as a natural and human-induced hazard. Nat. Hazards 2015, 79, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, S.K.; Higaki, D.; Bhattarai, T.P. Gully erosion in the Siwalik Hills, Nepal: Estimation of sediment production from active ephemeral gullies. Earth Surf. Process. Landforms 2006, 31, 155–165. [Google Scholar] [CrossRef]
- Muñoz-Robles, C.; Reid, N.; Frazier, P.; Tighe, M.; Briggs, S.V.; Wilson, B. Factors related to gully erosion in woody encroachment in south-eastern Australia. Catena 2010, 83, 148–157. [Google Scholar] [CrossRef]
- Kertész, Á.; Gergely, J. Gully erosion in Hungary, review and case study. Procedia Soc. Behav. Sci. 2011, 19, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Castillo, C.; Gómez, J.; Rodríguez, C.C. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth-Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- McCloskey, G.; Wasson, R.; Boggs, G.; Douglas, M. Timing and causes of gully erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: Management implications. Geomorphology 2016, 266, 96–104. [Google Scholar] [CrossRef]
- Little, W.C.; Piest, R.F.; Robinson, A.R. Sea Research Program for Channel Stability and Gully Control. Trans. ASAE 1980, 23, 362–365. [Google Scholar] [CrossRef]
- Dagnew, D.C.; Guzman, C.D.; Zegeye, A.D.; Tibebu, T.Y.; Getaneh, M.; Abate, S.; Zemale, F.A.; Ayana, E.K.; Tilahun, S.A.; Steenhuis, T.S. Impact of conservationractices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. J. Hydrol. Hydromech. 2015, 63, 210–219. [Google Scholar] [CrossRef]
- Zegeye, A.D.; Langendoen, E.J.; Guzman, C.D.; Dagnew, D.C.; Amare, S.D.; Tilahun, S.A.; Steenhuis, T.S. Gullies, a critical link in landscape soil loss: A case study in the subhumid highlands of Ethiopia. Land Degrad. Dev. 2018, 29, 1222–1232. [Google Scholar] [CrossRef]
- Soil Science Glossary Terms Committee. Glossary of Soil Science Terms; Soil Science Society of America: Madison, WI, USA, 2008. [Google Scholar]
- Poesen, J. Gully typology and gully control measures in the European loess belt. In Farm Land Erosion in Temperate Plains Environment and Hills. Proc. Symposium, Saint-Cloud, Paris, 1992; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 221–239. [Google Scholar]
- Bradford, J.M.; Piest, R.F. Erosional development of valley-bottom gullies in the upper midwestern United States. In Threshold in Geomorphology; Coates, D.R., Vitak, J.D., Eds.; Allen and Unwin: London, UK, 1980; pp. 75–101. [Google Scholar]
- Rădoane, M.; Rădoane, N. Gully Erosion. In Landform Dynamics and Evolution in Romania; Springer: Berlin/Heidelberg, Germany, 2017; pp. 371–396. [Google Scholar]
- Descroix, L.; Barrios, J.G.; Viramontes, D.; Poulenard, J.; Anaya, E.; Esteves, M.; Estrada, J. Gully and sheet erosion on subtropical mountain slopes: Their respective roles and the scale effect. Catena 2008, 72, 325–339. [Google Scholar] [CrossRef]
- Thomas, J.T.; Iverson, N.R.; Burkart, M.R. Bank-collapse processes in a valley-bottom gully, western Iowa. Earth Surf. Process. Landforms 2009, 34, 109–122. [Google Scholar] [CrossRef]
- Stavi, I.; Perevolotsky, A.; Avni, Y. Effects of gully formation and headcut retreat on primary production in an arid rangeland: Natural desertification in action. J. Arid. Environ. 2010, 74, 221–228. [Google Scholar] [CrossRef]
- Nogueras, P.; Burjachs, F.; Gallart, F.; Puigdefàbregas, J. Recent gully erosion in the El Cautivo badlands (Tabernas, SE Spain). Catena 2000, 40, 203–215. [Google Scholar] [CrossRef]
- Addisie, M.B.; Langendoen, E.J.; Aynalem, D.W.; Ayele, G.K.; Tilahun, S.A.; Schmitter, P.; Mekuria, W.; Moges, M.M.; Steenhuis, T.S. Assessment of Practices for Controlling Shallow Valley-Bottom Gullies in the Sub-Humid Ethiopian Highlands. Water 2018, 10, 389. [Google Scholar] [CrossRef]
- Poesen, J.; Valentin, C. Gully erosion and global change—Preface. Catena 2003, 50, 87–89. [Google Scholar] [CrossRef]
- Moges, A.; Holden, N.M. Estimating the rate and consequences of gully development, a case study of umbulo catchment in Southern Ethiopia. Land Degrad. Dev. 2008, 19, 574–586. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Haile, M.; Deckers, J.; Dewit, J.; Naudts, J.; Teka, K.; Govers, G.; Veyret-Picot, M.; et al. Assessment of gully erosion rates through interviews and measurements: A case study from northern Ethiopia. Earth Surf. Process. Landforms 2006, 31, 167–185. [Google Scholar] [CrossRef]
- Elsen, E.V.D.; Xie, Y.; Liu, B.; Stolte, J.; Wu, Y.; Trouwborst, K.; Ritsema, C.J. Intensive water content and discharge measurement system in a hillslope gully in China. Catena 2003, 54, 93–115. [Google Scholar] [CrossRef]
- Moges, M.A.; Schmitter, P.; Tilahun, S.A.; Langan, S.; Dagnew, D.C.; Akale, A.T.; Steenhuis, T.S. Suitability of watershed models to predict distributed hydrologic response in the awramba watershed in lake Tana basin. Land Degrad. Dev. 2017, 28, 1386–1397. [Google Scholar] [CrossRef]
- Wilson, G.V.; Wells, R.; Kuhnle, R.; Fox, G.; Nieber, J. Sediment detachment and transport processes associated with internal erosion of soil pipes. Earth Surf. Process. Landforms 2018, 43, 45–63. [Google Scholar] [CrossRef]
- Fox, G.A.; Chu-Agor, M.L.; Wilson, G.V. Seepage erosion: A significant mechanism of stream bank failure, Restoring Our Natural Habitat. In Proceedings of the 2007 World Environmental and Water Resources Congress, Tampa, FL, USA, 15–19 May 2007. [Google Scholar]
- Tebebu, T.Y.; Abiy, A.Z.; Dahlke, H.E.; Easton, Z.M.; Zegeye, A.D.; Tilahun, S.A.; Collick, A.S.; Kidnau, S.; Moges, S.; Dadgari, F.; et al. Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the Northern Highlands of Ethiopia. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 5235–5265. [Google Scholar] [CrossRef]
- Fox, G.A.; Wilson, G.V. The Role of Subsurface Flow in Hillslope and Stream Bank Erosion: A Review. Soil Sci. Soc. Am. J. 2010, 74, 717. [Google Scholar] [CrossRef]
- Zegeye, A.D.; Langendoen, E.J.; Stoof, C.R.; Tilahun, S.A.; Dagnew, D.C.; Zimale, F.A.; Guzman, C.D.; Yitaferu, B.; Steenhuis, T.S. Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: The Debre Mawi watershed. Soil 2016, 2, 443–458. [Google Scholar] [CrossRef]
- Addisie, M.B.; Ayele, G.K.; Gessess, A.A.; Tilahun, S.A.; Zegeye, A.D.; Moges, M.M.; Schmitter, P.; Langendoen, E.J.; Steenhuis, T.S. Gully Head Retreat in the Sub-Humid Ethiopian Highlands: The Ene-Chilala Catchment. Land Degrad. Dev. 2017, 28, 1579–1588. [Google Scholar] [CrossRef]
- Bernatek-Jakiel, A.; Poesen, J. Subsurface erosion by soil piping: Significance and research needs. Earth-Sci. Rev. 2018, 185, 1107–1128. [Google Scholar] [CrossRef]
- Okagbue, C.; Uma, K. Performance of gully erosion control measures in southeastern Nigeria. In Forest Hydrology and Watershed Management; Swanson, R.H., Bernier, P.Y., Woodard, P.D., Eds.; Iowa State University Press: Ames, IA, USA, 1987. [Google Scholar]
- Dowling, T.I.; Gallant, J.C. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39, 14. [Google Scholar]
- Fagbami, A.; Ajayi, F.O. Valley bottom soils of the sub-humid tropical Southwestern Nigeria on basement complex: Characteristics and classification. Soil Sci. Plant Nutr. 1990, 36, 179–194. [Google Scholar] [CrossRef]
- Lidon, B.; Legoupil, J.C.; Blanchet, F.; Simpara, M.; Sanogo, I. Rapid pre-development diagnosis (DIARPA). A development aid for valley bottoms. Agric. Dev. 1998, 123, 61–80. [Google Scholar]
- Keïta, A.; Hayde, L.G.; Yacouba, H.; Schultz, B. Valley Bottom Clay Distribution and Adapted Drainage Techniques. Lowl. Technol. Int. 2014, 16, 135–142. [Google Scholar] [CrossRef]
- Rebelo, A.J.; Le Maitre, D.C.; Esler, K.J.; Cowling, R.M. Hydrological responses of a valley-bottom wetland to land-use/land-cover change in a South African catchment: Making a case for wetland restoration. Restor. Ecol. 2015, 23, 829–841. [Google Scholar] [CrossRef]
- Carnicelli, S.; Benvenuti, M.; Ferrari, G.; Sagri, M. Dynamics and driving factors of late Holocene gullying in the Main Ethiopian Rift (MER). Geomorphology 2009, 103, 541–554. [Google Scholar] [CrossRef]
- Thomas, J.T.; Iverson, N.R.; Burkart, M.R.; Kramer, L.A. Long-term growth of a valley-bottom gully, western Iowa. Earth Surf. Process. Landforms 2004, 29, 995–1009. [Google Scholar] [CrossRef] [Green Version]
- Thorne, C. River width adjustment. I: Processes and mechanisms. J. Hydraul. Eng. 1998, 124, 881–902. [Google Scholar]
- Istanbulluoglu, E.; Bras, R.L.; Flores-Cervantes, H.; Tucker, G.E. Implications of bank failures and fluvial erosion for gully development: Field observations and modeling. J. Geophys. Res. Space Phys. 2005, 110, 110. [Google Scholar] [CrossRef]
- Bradford, J.M.; Farrell, D.A.; Larson, W.E. Mathematical Evaluation of Factors Affecting Gully Stability1. Soil Sci. Soc. Am. J. 1973, 37, 103–107. [Google Scholar] [CrossRef]
- Kleidon, A.; Zehe, E.; Ehret, U.; Scherer, U. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale. Hydrol. Earth Syst. Sci. 2013, 17, 225–251. [Google Scholar] [CrossRef] [Green Version]
- Rengers, F.K.; Tucker, G.E. The evolution of gully headcut morphology: A case study using terrestrial laser scanning and hydrological monitoring. Earth Surf. Process. Landforms 2015, 40, 1304–1317. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Dunne, T. The channel head. In Channel Network Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 1993; pp. 175–219. [Google Scholar]
- Spence, C.D.; Sauchyn, D.J. Groundwater influence on valley-head geomorphology, upper Battle Creek basin, Alberta and Saskatchewan. Bull. Geol. Surv. Can. 1999, 534, 249–255. [Google Scholar]
- Midgley, T.L.; Fox, G.A.; Wilson, G.V.; Heeren, D.M.; Simon, A.; Langendoen, E.J. Streambank erosion and instability induced by groundwater seepage. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting 2011, ASABE 2011, Louisville, KY, USA, 7–10 August 2011; pp. 3009–3029. [Google Scholar]
- Zehe, E.; Elsenbeer, H.; Lindenmaier, F.; Schulz, K.; Bloschl, G. Patterns of predictability in hydrological threshold systems. Water Resour. Res. 2007, 43, 43. [Google Scholar] [CrossRef]
- Selker, J.S.; Steenhuis, T.S.; Parlange, J.-Y. Wetting Front Instability in Homogeneous Sandy Soils under Continuous Infiltration. Soil Sci. Soc. Am. J. 1992, 56, 1346. [Google Scholar] [CrossRef]
- Kung, K.-J.S. Laboratory Observation of Funnel Flow Mechanism and its Influence on Solute Transport. J. Environ. Qual. 1993, 22, 91. [Google Scholar] [CrossRef]
- Nieber, J.L.; Warner, G.S. Soil pipe contribution to steady subsurface stormflow. Hydrol. Process. 1991, 5, 329–344. [Google Scholar] [CrossRef]
- Nieber, J.L.; Sidle, R.C. How do disconnected macropores in sloping soils facilitate preferential flow? Hydrol. Process. 2010, 24, 1582–1594. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; Rinaldo, A. Fractal river basins: Chance and Self-Organization; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Wijdenes, D.J.O.; Poesen, J.; Vandekerckhove, L.; Nachtergaele, J.; De Baerdemaeker, J. Gully-head morphology and implications for gully development on abandoned fields in a semi-arid environment, Sierra de Gata, southeast Spain. Earth Surf. Process. Landforms 1999, 24, 585–603. [Google Scholar] [CrossRef]
- Wijdenes, D.J.O.; Bryan, R. Gully-head erosion processes on a semi-arid valley floor in Kenya: A case study into temporal variation and sediment budgeting. Earth Surf. Process. Landforms 2001, 26, 911–933. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Simon, A. Closure to “Modeling the evolution of incised streams. II: Streambank erosion” by Eddy J. Langendoen and Andrew Simon. J. Hydraul. Eng. 2009, 135, 1107–1108. [Google Scholar] [CrossRef]
- Mukai, S. Gully Erosion Rates and Analysis of Determining Factors: A Case Study from the Semi-arid Main Ethiopian Rift Valley. Land Degrad. Dev. 2016, 28, 602–615. [Google Scholar] [CrossRef]
- Nyssen, J.; Veyret-Picot, M.; Poesen, J.; Moeyersons, J.; Haile, M.; Deckers, J.; Govers, G. The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. Soil Use Manag. 2004, 20, 55–64. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Luyten, E.; Veyret-Picot, M.; Deckers, J.; Haile, M.; Govers, G.; Veyret-Picot, M. Impact of road building on gully erosion risk: A case study from the Northern Ethiopian Highlands. Earth Surf. Process. Landforms 2002, 27, 1267–1283. [Google Scholar] [CrossRef]
- Nyssen, J.; Moeyersons, J.; Deckers, J.; Haile, M.; Poesen, J. Vertic movements and the development of stone covers and gullies, Tigray Highlands, Ethiopia. Z. Geomorphol. 2000, 44, 145–164. [Google Scholar]
- Hagos, G.; Gessesse, D.; Awdenegest, M. Rate of gully expansion on major land uses, the case of Huluka watershed, Central Rift Valley, Ethiopia. J. Biol. Agric. Healthc. 2014, 4, 63–69. [Google Scholar]
- Tilahun, S.A.; Guzman, C.D.; Zegeye, A.D.; Ayana, E.K.; Collick, A.S.; Yitaferu, B.; Steenhuis, T.S. Spatial and Temporal Patterns of Soil Erosion in the Semi-humid Ethiopian Highlands: A Case Study of Debre Mawi Watershed. In Nile River Basin; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; Volume 9783319027203, pp. 149–163. [Google Scholar]
- Olofin, E. Some effects of the Tiga Dam on valleyside erosion in downstream reaches of the River Kano. Appl. Geogr. 1984, 4, 321–332. [Google Scholar] [CrossRef]
- Boardman, J.; Parsons, A.; Holland, R.; Holmes, P.; Washington, R.; Parsons, A. Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. Catena 2003, 50, 165–184. [Google Scholar] [CrossRef]
- Boardman, J. How old are the gullies (dongas) of the Sneeuberg uplands, Eastern Karoo, South Africa? Catena 2014, 113, 79–85. [Google Scholar] [CrossRef]
- Rowntree, K. The evil of sluits: A re-assessment of soil erosion in the Karoo of South Africa as portrayed in century-old sources. J. Environ. Manag. 2013, 130, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Prosser, I.P.; Slade, C.J. Gully formation and the role of valley-floor vegetation, southeastern Australia. Geology 1994, 22, 1127. [Google Scholar] [CrossRef]
- Strunk, H. Soil degradation and overland flow as causes of gully erosion on mountain pastures and in forests. Catena 2003, 50, 185–198. [Google Scholar] [CrossRef]
- Ionita, I.; Niacsu, L. Land degradation and soil conservation within the Pereshivul Mic catchment—Tutova Rolling Hills. Lucrari Stiintifice, Universitatea de Stiinte Agricole Si Medicina Veterinara “Ion Ionescu de la Brad” Iasi. Seria Agron. 2010, 53, 105–109. [Google Scholar]
- Gómez-Gutiérrez, Á.; Schnabel, S.; De Sanjosé, J.J.; Contador, F.L. Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Z. Geomorphol. Suppl. Issues 2012, 56, 27–44. [Google Scholar] [CrossRef]
- Gutiérrez Álvaro, G.; Schnabel, S.; Contador, F.L. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad. Dev. 2009, 20, 535–550. [Google Scholar] [CrossRef]
- Mosley, M.P. Evolution of A Discontinuous Gully System. Ann. Assoc. Am. Geogr. 1972, 62, 655–663. [Google Scholar] [CrossRef]
- Patton, P.C.; Schumm, S.A. Gully erosion, Northwestern Colorado: A threshold phenomenon. Geology 1975, 3, 88–90. [Google Scholar] [CrossRef]
- Marinho, G.V.; de Castro, S.S.; de Campos, A.B. Hydrology and gully processes in the upper Araguaia River basin, Central Brazil. Z. Geomorphol. Suppl. 2006, 145, 119–145. [Google Scholar]
- Gellis, A.C.; Pavich, M.J.; Bierman, P.R.; Clapp, E.M.; Ellevein, A.; Aby, S. Modern sediment yield compared to geologic rates of sediment production in a semi-arid basin, New Mexico: Assessing the human impact. Earth Surf. Process. Landforms 2004, 29, 1359–1372. [Google Scholar] [CrossRef]
- Jahn, R.; Blume, H.; Asio, V.; Spaargaren, O.; Schad, P. Guidelines for Soil Description; FAO: Rome, Italy, 2006. [Google Scholar]
- Ali, G.; Birkel, C.; Tetzlaff, D.; Soulsby, C.; McDonnell, J.J.; Tarolli, P. A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions. Earth Surf. Process. Landforms 2014, 39, 399–413. [Google Scholar] [CrossRef]
- Desmet, P.; Poesen, J.; Govers, G.; Vandaele, K. Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. Catena 1999, 37, 377–392. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Scholiers, N.; Jacob, M.; Haile, M.; Deckers, J.; Nyssen, J. Factors controlling the morphology and volume (V)-length (L) relations of permanent gullies in the northern Ethiopian Highlands. Earth Surf. Process. Landforms 2013, 38, 1672–1684. [Google Scholar] [CrossRef]
- MacFall, J.; Robinette, P.; Welch, D. Factors Influencing Bank Geomorphology and Erosion of the Haw River, a High Order River in North Carolina, since European Settlement. PLoS ONE 2014, 9, e110170. [Google Scholar] [CrossRef] [PubMed]
- Begin, Z.B.; Schumm, S.A. Instability of Alluvial Valley Floors: A Method for its Assessment. Trans. ASAE 1979, 22, 347–350. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J.; MacKenzie, D.H. Topographic Effects on the Distribution of Surface Soil Water and the Location of Ephemeral Gullies. Trans. ASAE 1988, 31, 1098–1107. [Google Scholar] [CrossRef]
- Prosser, I.P.; Abernethy, B. Predicting the Topographic Limits to a Gully Network Using a Digital Terrain Model and Process Thresholds. Water Resour. Res. 1996, 32, 2289–2298. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. GSA Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J.; Govers, G.; Van Wesemael, B. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 1996, 16, 161–173. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J.; Marques De Silva, J.R.; Govers, G.; Desmet, P. Assessment of factors controlling ephemeral gully erosion in Southern Portugal and Central Belgium using aerial photographs. Z. Geomorphol. 1997, 41, 273–287. [Google Scholar]
- Vandekerckhove, L.; Poesen, J.; Wijdenes, D.O.; Nachtergaele, J.; Kosmas, C.; Roxo, M.; De Figueiredo, T. Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf. Process. Landforms 2000, 25, 1201–1220. [Google Scholar] [CrossRef]
- Morgan, R.; Mngomezulu, D. Threshold conditions for initiation of valley-side gullies in the Middle Veld of Swaziland. Catena 2003, 50, 401–414. [Google Scholar] [CrossRef]
- Mhiret, D.A.; Dagnew, D.C.; Assefa, T.T.; Tilahun, S.A.; Zaitchik, B.F.; Steenhuis, T.S. Erosion hotspot identification in the sub-humid Ethiopian highlands. Ecohydrol. Hydrobiol. 2018, 19, 146–154. [Google Scholar] [CrossRef]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed]
- Langendoen, E.J. Application of the CONCEPTS channel evolution model in stream restoration strategies. In Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools; Simon, A., Bennett, S.J., Castro, J.M., Eds.; American Geophysical Union: Washington, DC, USA, 2011; pp. 487–502. [Google Scholar]
- Langendoen, E.; Tebebu, T.; Steenhuis, T.; Tilahun, S. Assessing gully widening and its control in the Debra-Mawi watershed, northern Ethiopia. In Proceedings of the first International Conference on Science and Technology towards the Development of East Africa (ICST), Bahir Dar, Ethiopia, 17–18 May 2013; pp. 214–222. [Google Scholar]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Barbieri, M. Badlands denudation “hot spots”: The role of parent material properties on geomorphic processes in 20-years monitored sites of Southern Tuscany (Italy). Catena 2013, 106, 31–41. [Google Scholar] [CrossRef]
- Saksa, M.; Minár, J. Assessing the natural hazard of gully erosion through a Geoecological Information System (GeIS): A case study from the Western Carpathians. Geogr. Sb. CGS 2012, 117, 152–169. [Google Scholar]
- Bayabil, H.K.; Tilahun, S.A.; Collick, A.S.; Yitaferu, B.; Steenhuis, T.S.; Woldetsadik, B. Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of the Maybar watershed. Ecohydrology 2010, 3, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, P.; Li, Y.; Ding, W.; Wang, Y.; Luo, H. Comparative study on slope erosion characteristics of loess and purple soil. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, CDCIEM 2011, Changsha, China, 19–20 February 2011; pp. 1462–1465. [Google Scholar]
- Jin, X.; Cheng, G.; Xu, C.Y.; Fan, J.; Ma, Z. Estimation of the Spatial Distribution of Soil Erosion in the Hilly Area of Sichuan, China; IAHS-AISH Publication: Wallingford, CT, USA, 2012; pp. 228–234. [Google Scholar]
- Brückner, H. Man’s impact on the evolution of the physical environment in the Mediterranean region in historical times. GeoJournal 1986, 13, 7–17. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Tebebu, T.Y.; Steenhuis, T.S.; Dagnew, D.C.; Guzman, C.D.; Bayabil, H.K.; Zegeye, A.D.; Collick, A.S.; Langan, S.; McAllister, C.; Langendoen, E.; et al. Improving efficacy of landscape interventions in the (sub) humid Ethiopian highlands by improved understanding of runoff processes. Front. Earth Sci. 2015, 3, 3. [Google Scholar]
- Zimale, F.A.; Tilahun, S.A.; Tebebu, T.Y.; Guzman, C.D.; Hoang, L.; Schneiderman, E.M.; Langendoen, E.J.; Steenhuis, T.S. Improving watershed management practices in humid regions. Hydrol. Process. 2017, 31, 3294–3301. [Google Scholar] [CrossRef]
- Tesemma, Z.K.; Mohamed, Y.A.; Steenhuis, T.S. Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol. Process. 2010, 24, 3747–3758. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Ayana, E.K.; Guzman, C.D.; Dagnew, D.C.; Zegeye, A.D.; Tebebu, T.Y.; Yitaferu, B.; Steenhuis, T.S. Revisiting storm runoff processes in the upper Blue Nile basin: The Debre Mawi watershed. Catena 2016, 143, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Wang, J.; Guo, Z.; Cai, C. Research on sediment and solute transport on red soil slope under simultaneous influence of scouring flow. Acta Pedol. Sin. 2016, 53, 365–374. [Google Scholar]
- Wells, R.R.; Momm, H.G.; Bennett, S.J.; Bingner, R.L.; Dabney, S.M. An experimental study of gully sidewall expansion. In Proceedings of the ASABE—International Symposium on Erosion and Landscape Evolution 2011, Anchorage, AK, USA, 18–21 September 2011; pp. 333–341. [Google Scholar]
- Ionita, I.; Niacsu, L.; Petrovici, G.; Blebea-Apostu, A.M. Gully development in eastern Romania: A case study from Falciu Hills. Nat. Hazards 2015, 79, 113–138. [Google Scholar] [CrossRef]
- Deng, Q.; Miao, F.; Zhang, B.; Luo, M.; Liu, H.; Liu, X.; Qin, F.; Liu, G. Planar morphology and controlling factors of the gullies in the Yuanmou Dry-hot Valley based on field investigation. J. Arid. Land 2015, 7, 778–793. [Google Scholar] [CrossRef] [Green Version]
- Pederson, J.L.; Petersen, P.A.; Dierker, J.L. Gullying and erosion control at archaeological sites in Grand Canyon, Arizona. Earth Surf. Process. Landforms 2006, 31, 507–525. [Google Scholar] [CrossRef]
- Sole’-Benet, A.; Calvo, A.; Cerda`, A.; La’zaro, R.; Pini, R.; Barbero, J. Influences of micro-relief patterns and plant cover on runoff related processes in badlands from Tabernas (SE Spain). Catena 1997, 31, 23–38. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Deckers, J.; Haile, M.; Nyssen, J. Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology 2012, 173, 185–195. [Google Scholar] [CrossRef]
- Ayele, G.K.; Gessess, A.A.; Addisie, M.B.; Tilahun, S.A.; Tebebu, T.Y.; Tenessa, D.B.; Langendoen, E.J.; Nicholson, C.F.; Steenhuis, T.S. A Biophysical and Economic Assessment of a Community-based Rehabilitated Gully in the Ethiopian Highlands. Land Degrad. Dev. 2016, 27, 270–280. [Google Scholar] [CrossRef]
- Evans, R. Extent, frequency and rates of rilling in arable land in localities in England and Wales. In Farm Land Erosion in Temperate Plains Environment and Hills. Proc. symposium, Saint-Cloud, Paris, 1992; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 177–190. [Google Scholar]
- Li, Z.; Zhang, Y.; Zhu, Q.; He, Y.; Yao, W. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 2015, 228, 462–469. [Google Scholar] [CrossRef]
- Reubens, B.; Poesen, J.; Nyssen, J.; Leduc, Y.; Abraha, A.Z.; Tewoldeberhan, S.; Bauer, H.; Gebrehiwot, K.; Deckers, J.; Muys, B. Establishment and management of woody seedlings in gullies in a semi-arid environment (Tigray, Ethiopia). Plant Soil 2009, 324, 131–156. [Google Scholar] [CrossRef]
- Capra, A. Ephemeral gully and gully erosion in cultivated land: A review. In Drainage Basins and Catchment Management: Classification, Modelling and Environmental Assessment; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 109–141. [Google Scholar]
- Crampton, C. Linear-Patterned Slopes in the Discontinuous Permafrost Zone of the Central Mackenzie River Valley. Arctic 1974, 27, 265–272. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Lowrance, R.R.; Simon, A. Assessing the impact of riparian processes on streambank stability. Ecohydrology 2009, 2, 360–369. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Li, Z.; Li, H.; He, Y. Effect of narrow terrace on gully erosion in northern Shaanxi Loess area. Trans. Chin. Soc. Agric. Eng. 2015, 31, 125–130. [Google Scholar]
- Konsoer, K.M.; Rhoads, B.L.; Langendoen, E.J.; Best, J.L.; Ursic, M.E.; Abad, J.D.; Garcia, M.H. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphol. 2016, 252, 80–97. [Google Scholar] [CrossRef]
- Rey, F. Influence of vegetation distribution on sediment yield in forested marly gullies. Catena 2003, 50, 549–562. [Google Scholar] [CrossRef]
- Keesstra, S.; Van Huissteden, J.; Vandenberghe, J.; Van Dam, O.; De Gier, J.; Pleizier, I.; Keesstra, S. Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 2005, 69, 191–207. [Google Scholar] [CrossRef]
Reference | Location (Specific Place) | Rehabilitation Measures | Offsite/Upland Activities | Causes and Controlling Factors |
---|---|---|---|---|
[60] | Ethiopia (rift valley) | No rehabilitation measures before 2005 | - | LU change (forest to grazing and cropland), topography, gully morphological variable, rainfall, soil texture, and slope gradient |
[1] | Ethiopia (rift valley) | - | - | Over grazing, deforestation, and soil piping |
[61,62,63]. | Ethiopia (North Ethiopia) | Check dams, unsuccessful diversion and concentration of field runoff | Hillslope vegetation degradation | Road construction, LU change (arable to intensively grazing land), eucalyptus plantation, drought, vegetation degradation, pipe and tunnel erosion, deforestation, concentrated surface runoff, and Vertisol cracking and swelling |
[64] | Ethiopia (Huluk) | No rehabilitation measures | - | Vegetation degradation and intensive cultivation |
[30,32,65] | Ethiopia (Debre Mawi) | Rehabilitation measures were implemented but not successful | - | Vegetation degradation, increased surface and sub-surface runoff, and increased gully bank height |
[33] | Ethiopia (Ene-Chilala) | Riprap integrated with grasses were used effectively to halt shallow (<3 m deep) gully head-cut | Diversion of runoff from the upslope area to VB land | Presence of shallow groundwater and occurrence of cracks facilitated gullies |
[24] | Ethiopia (Sidama Umbulo catchment) | No rehabilitation measures | Decline in hillslope vegetation | LU change from tree and shrub to croplands, trail, pipe and tunnel, and unweathered pumice layers and silt horizon |
[58] | Kenya | - | - | Drought and LU pressure |
[66] | Kano, Nigeria | - | - | Hydrological change: dam and reservoir construction |
[67,68] | South Africa | Erosion control measures halted incision of gullies | - | Vegetation degradation, overgrazing, change in vegetation from grassland to shrubland, periodic drought, wetland drainage, wagon track, climate change and concentrated water flow, new settlement, trails, and dam construction |
[69] | South Africa (Karoo) | - | Hillslope vegetation degradation | Deforestation, overgrazing, road and railway construction, intense rainfall, rapid runoff, and increased drainage density |
[20] | Israel (Negev Desert) | - | - | Natural desertification (long-term climate change) |
[70] | Australia (Murrumbateman Creek catchment) | Swampy meadow helped in halting incision | Vegetation degradation, LU change, increase in discharge, large drainage area (>10 km2), and climate change | |
[71] | Italy | - | - | Overgrazing and cattle trampling, low infiltration caused by VB silt loam sedimentation, presence of silty layer, decrease in the field capacity, residual water storage capacity, and infiltration capacity |
[72] | Southern Moldavian Plateau (Pereschivul Mic catchment) | Strip cropping with wind-breaks were effective | Vegetation clearance | Up and down farming, inadequate road network |
[73] | Southwest Spain | - | - | Antecedent soil moisture, high intense rainfall, and long duration rainfall |
[74] | Southwest Spain | - | - | Vegetation cover decrease and cultivation of large areas |
[21] | Spain (Tabernas Neogene basin) | - | - | Vegetation degradation due to drought and increased runoff coefficient (with high eroding power) |
[47] | Eastern Colorado | - | - | Intense rainfall, winter snowmelt, long duration low intensity rainfall, and increase in volumetric water content |
[75] | Northern Colorado (North-northeast of Fort Collins) | - | - | Intense rainfall, vegetation degradation, cattle trampling, and pronounced surface runoff |
[76] | Northwest Colorado | - | - | Locally oversteepened land |
[42] | Iowa | - | - | Runoff plays an important role |
[19] | Western Iowa | - | - | Rainfall and snowmelt increase in hydraulic head at gully bank |
[77] | Brazil (Queixada’s Brook sub-basin) | Conservation measures are not successful (caused the incision of new gullies) | - | Deforestation, pasture, elevated groundwater, intense rainfall, lithological discontinuity (may favor piping) |
[18] | Mexico (Western Sierra Madre) | - | - | Deforestation, overgrazing and cattle trampling, large cultivation area, large drainage area, high silt content (>20%), and high sand content (>80%) |
[78] | New Mexico (Arroyo Chavez basin) | - | - | Overgrazing, human disturbance (gas pipeline) |
Reference | Location (Specific Place) | Geology and Lithology | Annual Rainfall (mm y−1) | Slope † | Soil Type | Climate | Hydrology | Land-Use | Date of Gully Initiation | Drain-Age Area (ha) | Soil Loss |
---|---|---|---|---|---|---|---|---|---|---|---|
[60] | Ethiopia (rift-valley) | Underlain by quaternary lacustrine sediments | 881 | 3–9% and <2% | Vertisols (dominant) | Semi-arid | Increase in drainage area causes increase in gully expansion | Crop (dominant) and grazing land | Before 1957 | Range between 18 to 611 | 16.2 t ha−1 y−1 |
[1] | Ethiopia (rift valley) | Quaternary volcanic rock and lacustrine deposits | 769 | 4.6–9.3% | - | Semi-arid | - | - | - | - | - |
[25] | Ethiopia (North Ethiopia) | Quaternary form (alluvium, colluvium, and travertine), Mesozoic limestone and sandstone, and tertiary basalt flow | 750 | 9% | Vertisols | Semi-arid | Surface runoff dominated | Grazing land and eucalyptus plantation | Two gullies that started in 1965 and 1935 in the VB were studied | 108 and 264, respect-ively | 5 t ha−1 y−1 and 2.3 t ha−1 y−1, respect-ively |
[64] | Ethiopia (Huluk) | - | - | 0.8–5% | Andosol and Nitisol | - | - | Grazing and cultivated land | Before 1973 and after 2000 | - | 0.1 to 8 t ha−1 y−1 |
[30] | Ethiopia (Debre Mawi) | Underlain by highly weathered and fractured basalt | 1240 | - | Vertisol dominated | Sub-humid | Subsurface dominated and relatively small surface runoff contribution | Grazing and cropland | 1981 | 17 | 31 to 530 t ha−1 y−1 |
[13] | Ethiopia (Debre Mawi) | Underlain by highly weathered and fractured basalt | 1240 | Vertisol dominated | Sub-humid | Subsurface dominated and relatively small surface runoff contribution | Grazing and cropland | - | 17 | In 2013, 197 t ha−1 y−1 and, in 2014, 69 t ha−1 y−1 (the reduced soil loss was due to treated head-cut in 2014) | |
[33] | Ethiopia (Ene-Chilala) | Oligocene to Miocene basaltic shield volcanic origin | 1225 | 5% | Vertisols | Sub-humid | Subsurface dominated and relatively small surface runoff contribution | Grazing land | - | 0.07 to 10.91 ha with an average value of 2.5 | 19.4 m3 y−1 per gully head |
[24] | Ethiopia (Sidama Umbulo catchment) | Volcanic lacustrine deposit (tuff, pumice, and ash) | - | - | Mollic Andosol | - | Surface runoff and pipe collapses control gully development | Cultivated land | Between 1974 and 1985 | - | The average rate of soil loss from 11 to 30 t ha−1 y−1 |
[58] | Kenya | Alluvio-lacustrine sedimentary features | - | Cambisol or Fluvisol | Semi-arid | - | Savannah woodland | - | 0.09 to 1.4 | 6.7 t ha−1 y−1 to 29.5 t ha−1 y−1 | |
[66] | Nigeria (Kano) | Sandy alluvium deposit old granite and metamorphic rock type | 800 and 900 | 0.8–1% | - | Tropical dry and wet type | - | - | - | - | - |
[67,68] | South Africa | Colluvial and fluvial sediment deposits, less resistant Balfour formation mudstone, and shales and sandstone | 346 | <17.6% | - | Semi-arid | Surface runoff dominated | Grazing and cultivated | Between 1937 and 1960s | 115 m3 ha−2 | |
[69] | South Africa (Karoo) | - | 100–400 | - | - | Semi-arid | Both subsurface and surface runoff are important | - | ~1910 | - | - |
[20] | Israel (Negev Desert) | Hard limestone and dolomite, the soil is alluvial loess with a loamy-sand texture | 90 | 1–3% | - | Arid | Surface runoff dominated | Grazing land | - | - | - |
[71] | Italy | - | - | Flat | Lithic Borofolists (peat-like organic soil) | - | Hortonian overland flow is reported to be the major cause of gully erosion | Grazing land | ~1990 | - | - |
[72] | Southern Moldavian Plateau (Pereschivul Mic catchment) | - | 510 | Average slope of 14% | Sandy-clayey chernisoils and luvisol | Temperate continental | Only surface runoff was reported | Crop production | ~1961 | - | 9.8 t ha−1 y−1 |
[73] | Southwest Spain | Alluvial deposit | 518 | 0% | Rigosol | Mediterranean with pronounced dry summer season | Both surface and subsurface water flow process contribute to gully development | Savannah-like wooded rangelands | ~1790 | - | 0.063 t ha−1 y−1 |
[74] | Southwest Spain | - | 525 | - | Semi-arid | - | Cultivated land, grass land, and woody vegetation | - | 2.3 m y−1 (head-cut retreat) | ||
[21] | Spain (Tabernas Neogene basin) | Colluvial deposit, poorly stratified marls, and sandstone beds | 218 | Level | - | Thermo-Mediterranean semi-arid | Surface runoff dominated | Grazing land | - | - | - |
[47] | Eastern Colorado | Alluvial deposit, weakly cemented shales, and Sandstone | - | - | - | Semi-arid | - | Grass lined | - | - | 0.34 m y−1 (head-cut retreat) |
[75] | Northern Colorado (North-northeast of Fort Collins) | Alluvial fill shale bedrock | 384 | Gentle | - | Semi-arid | Full saturation of the gully bank and overland flow control gullies | Grazing land | - | - | - |
[76] | Northwest Colorado | Light-brown and grey sandstone interbedded with siltstone and marlstone bed | 317.5 | Overly steepened locally | - | Semi-arid | - | Sagebrush and greasewood are the predominant vegetative cover | - | - | - |
[19,42] | Iowa | Thick alluvium loess deposits | - | Gentle | - | - | Subsurface dominated | No-till cropland, grasses and shrubs on the lower slopes. | - | - | 320 t y−1 |
[77] | Brazil (Queixada’s Brook sub-basin) | Covered by alluvial and colluvium deposits, sandstone regolith, and fine sand soil | 1600 | <8% | Plinthic, Entisol, Red Oxisol, | Tropical | Both subsurface and surface runoff are important | Pasture and secondary agriculture | Recent (<10 years age) | - | - |
[18] | Mexico (western Sierra Madre) | Thick phaeozems, completed by alluvial fills | 450 (foot slope) and 900 (crest) | Gentle | Phaeozems and Cambisols | Tropical | Surface runoff dominated | Grazing land | - | - | - |
[78] | New Mexico (Arroyo Chavez basin) | Soils derived from underlying sandstones and shales, as well as from eolian silt | 329 | - | - | Semi-arid | Overland flow due to reduced infiltration is reported | Grazing land | - | - | 33.5 t ha−1 y−1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amare, S.; Keesstra, S.; van der Ploeg, M.; Langendoen, E.; Steenhuis, T.; Tilahun, S. Causes and Controlling Factors of Valley Bottom Gullies. Land 2019, 8, 141. https://doi.org/10.3390/land8090141
Amare S, Keesstra S, van der Ploeg M, Langendoen E, Steenhuis T, Tilahun S. Causes and Controlling Factors of Valley Bottom Gullies. Land. 2019; 8(9):141. https://doi.org/10.3390/land8090141
Chicago/Turabian StyleAmare, Selamawit, Saskia Keesstra, Martine van der Ploeg, Eddy Langendoen, Tammo Steenhuis, and Seifu Tilahun. 2019. "Causes and Controlling Factors of Valley Bottom Gullies" Land 8, no. 9: 141. https://doi.org/10.3390/land8090141
APA StyleAmare, S., Keesstra, S., van der Ploeg, M., Langendoen, E., Steenhuis, T., & Tilahun, S. (2019). Causes and Controlling Factors of Valley Bottom Gullies. Land, 8(9), 141. https://doi.org/10.3390/land8090141