Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes
Abstract
:1. Introduction
2. Networks in Dynamic Urban Landscapes
2.1. Connectivity
2.2. Urban Social-Ecological Networks and Connectivity
2.3. Dynamics of Urban SES
3. Linking Social-Ecological Connectivity and Urban Ecosystem Service Provision
3.1. Connectivity and Ecosystem Services
3.2. Ecosystem Services via Social-Ecological Connectivity in a Network
4. Practical Considerations: Limitations and Application
4.1. Application of Socio-Ecological Connectivity in a Model Dynamic System
4.2. Considering Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.; Thompson, P.L.; Loreau, M. Spatial ecological networks: Planning for sustainability in the long-term. Curr. Opin. Environ. Sustain. 2017, 29, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, E.A. Ecological Networks in Urban Landscapes; Wageningen University: Wageningen, The Netherlands, 2000. [Google Scholar]
- Baguette, M.; Blanchet, S.; Legrand, D.; Stevens, V.M.; Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 2012, 88, 310–326. [Google Scholar] [CrossRef] [PubMed]
- LaPoint, S.; Balkenhol, N.; Hale, J.; Sadler, J.P.; Van Der Ree, R. Ecological connectivity research in urban areas. Funct. Ecol. 2015, 29, 868–878. [Google Scholar] [CrossRef]
- Wainwright, J.; Turnbull, L.; Ibrahim, T.G.; Lexartza-Artza, I.; Thornton, S.F.; Brazier, R.E. Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology 2011, 126, 387–404. [Google Scholar] [CrossRef]
- Zetterberg, A.; Mörtberg, U.M.; Balfors, B. Making graph theory operational for landscape ecological assessments, planning, and design. Landsc. Urban. Plan. 2010, 95, 181–191. [Google Scholar] [CrossRef]
- Brose, U.; Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150267. [Google Scholar] [CrossRef] [Green Version]
- Keys, P.W.; Galaz, V.; Dyer, M.; Matthews, N.; Folke, C.; Nyström, M.; Cornell, S.E. Anthropocene risk. Nat. Sustain. 2019, 2, 667–673. [Google Scholar] [CrossRef]
- Klinga, P.; Mikoláš, M.; Smolko, P.; Tejkal, M.; Höglund, J.; Paule, L. Considering landscape connectivity and gene flow in the Anthropocene using complementary landscape genetics and habitat modelling approaches. Landsc. Ecol. 2019, 34, 521–536. [Google Scholar] [CrossRef]
- Johst, K.; Drechsler, M.; Van Teeffelen, A.J.; Hartig, F.; Vos, C.C.; Wissel, S.; Wätzold, F.; Opdam, P. Biodiversity conservation in dynamic landscapes: Trade-offs between number, connectivity and turnover of habitat patches. J. Appl. Ecol. 2011, 48, 1227–1235. [Google Scholar] [CrossRef]
- Nabavi, E.; Daniell, K.A. Rediscovering social–ecological systems: Taking inspiration from actor-networks. Sustain. Sci. 2016, 12, 621–629. [Google Scholar] [CrossRef]
- Baggio, J.A.; BurnSilver, S.B.; Arenas, A.; Magdanz, J.S.; Kofinas, G.P.; De Domenico, M. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proc. Natl. Acad. Sci. USA 2016, 113, 13708–13713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Benda, L.E.; Miller, D.J.; Dunne, T.; Reeves, G.H.; Agee, J.K. Dynamic Landscape Systems. In River Ecology and Management; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1998; pp. 261–288. [Google Scholar]
- Pastur, G.M.; Peri, P.L.; Lencinas, M.V.; García-Llorente, M.; Martín-López, B. Spatial patterns of cultural ecosystem services provision in Southern Patagonia. Landsc. Ecol. 2016, 31, 383–399. [Google Scholar] [CrossRef]
- Bürgi, M.; Silbernagel, J.; Wu, J.; Kienast, F. Linking ecosystem services with landscape history. Landsc. Ecol. 2015, 30, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Andersson, E. Urban Landscapes and Sustainable Cities. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef]
- Bodin, Ö.; Tengö, M. Disentangling intangible social–ecological systems. Glob. Environ. Chang. 2012, 22, 430–439. [Google Scholar] [CrossRef]
- Bodin, Ö.; Alexander, S.M.; Baggio, J.; Barnes, M.L.; Berardo, R.; Cumming, G.; Dee, L.E.; Fischer, A.P.; Fischer, M.; Garcia, M.M.; et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat. Sustain. 2019, 2, 551–559. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Perkins, T.A.; Garcia, A.J.; Paz-Soldán, V.A.; Stoddard, S.T.; Reiner, R.C.; Vazquez-Prokopec, G.; Bisanzio, D.; Morrison, A.C.; Halsey, E.S.; Kochel, T.J.; et al. Theory and data for simulating fine-scale human movement in an urban environment. J. R. Soc. Interface 2014, 11, 20140642. [Google Scholar] [CrossRef] [PubMed]
- Braaker, S.; Ghazoul, J.; Obrist, M.K.; Moretti, M. Habitat connectivity shapes urban arthropod communities: The key role of green roofs. Ecology 2014, 95, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, C.E.; Hobbs, R.J. Time for a change: Dynamic urban ecology. Trends Ecol. Evol. 2012, 27, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Groffman, P.M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.; Larson, K.L.; Morse, J.L.; Neill, C.; et al. Ecological homogenization of urban USA. Front. Ecol. Environ. 2014, 12, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Ossola, A.; Locke, D.H.; Lin, B.; Minor, E. Greening in style: Urban form, architecture and the structure of front and backyard vegetation. Landsc. Urban. Plan. 2019, 185, 141–157. [Google Scholar] [CrossRef]
- Ossola, A.; Schifman, L.; Herrmann, D.L.; Garmestani, A.S.; Schwarz, K.; Hopton, M.E. The Provision of Urban Ecosystem Services Throughout the Private-Social-Public Domain: A Conceptual Framework. Cities Environ. 2018, 11, 1–15. [Google Scholar]
- Grafius, D.R.; Corstanje, R.; Siriwardena, G.M.; Plummer, K.E.; Harris, J.A. A bird’s eye view: Using circuit theory to study urban landscape connectivity for birds. Landsc. Ecol. 2017, 32, 1771–1787. [Google Scholar] [CrossRef]
- Pinto, A.J.; Remesar, A.; Brandão, P.; Nunes Da Silva, F. Planning public spaces networks towards urban cohesion. In Proceedings of the 46th ISOCARP Congress, Nairobi, Kenya, 19–23 September 2010. [Google Scholar]
- Reyers, B.; Biggs, R.; Cumming, G.S.; Elmqvist, T.; Hejnowicz, A.P.; Polasky, S. Getting the measure of ecosystem services: A social–ecological approach. Front. Ecol. Environ. 2013, 11, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban. Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Millennium Ecosystem Assessment: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Janssen, M.; Bodin, Ö.; Anderies, J.; Elmqvist, T.; Ernstson, H.; Mcallister, R.; Olsson, P.; Ryan, P. Toward a Network Perspective of the Study of Resilience in Social-Ecological Systems. Ecol. Soc. 2006, 11. Available online: http://www.ecologyandsociety.org/vol11/iss1/art15/ (accessed on 31 October 2020). [CrossRef] [Green Version]
- Marcus, L.; Colding, J. Towards a Spatial Morphology of Urban Social-Ecological Systems. In 18th International Seminar on Urban Form; Royal Swedish Academy of the Sciences: Stockholm, Sweden, 2011. [Google Scholar]
- López-Duarte, P.C.; Carson, H.S.; Cook, G.S.; Fodrie, F.J.; Becker, B.J.; DiBacco, C.; Levin, L.A. What controls connectivity? An empirical, multi-species approach. Integr. Comp. Biol. 2012, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koen, E.L.; Bowman, J.; Sadowski, C.; Walpole, A.A. Landscape connectivity for wildlife: Development and validation of multispecies linkage maps. Methods Ecol. Evol. 2014, 5, 626–633. [Google Scholar] [CrossRef]
- Tsaligopoulos, A.; Karapostoli, A.; Radicchi, A.; Economou, C.; Kyvelou, S.; Matsinos, Y.G. Ecological connectivity of urban quiet areas: The case of Mytilene, Greece. Cities Health 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 2000, 90, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Borgström, S. Balancing diversity and connectivity in multi-level governance settings for urban transformative capacity. Ambio 2019, 48, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Borgatti, S.P.; Mehra, A.; Brass, D.J.; Labianca, G. Network Analysis in the Social Sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wellman, B. Social Connectivity in America: Changes in Adult Friendship Network Size From 2002 to 2007. Am. Behav. Sci. 2010, 53, 1148–1169. [Google Scholar] [CrossRef] [Green Version]
- Stepanikova, I.; Nie, N.H.; He, X. Time on the Internet at home, loneliness, and life satisfaction: Evidence from panel time-diary data. Comput. Hum. Behav. 2010, 26, 329–338. [Google Scholar] [CrossRef]
- Wolfram, M. Cities shaping grassroots niches for sustainability transitions: Conceptual reflections and an exploratory case study. J. Clean. Prod. 2018, 173, 11–23. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Kabisch, N. Designing a knowledge co-production operating space for urban environmental governance—Lessons from Rotterdam, Netherlands and Berlin, Germany. Environ. Sci. Policy 2016, 62, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Buijs, A.E.; Mattijssen, T.J.; Van der Jagt, A.P.; Ambrose-Oji, B.; Andersson, E.; Elands, B.H.; Steen Møller, M. Active citizenship for urban green infrastructure: Fostering the diversity and dynamics of citizen contributions through mosaic governance. Curr. Opin. Environ. Sustain. 2016, 22, 1–6. [Google Scholar] [CrossRef]
- Ehnert, F.; Frantzeskaki, N.; Barnes, J.; Borgström, S.; Gorissen, L.; Kern, F.; Strenchock, L.; Egermann, M. The Acceleration of Urban Sustainability Transitions: A Comparison of Brighton, Budapest, Dresden, Genk, and Stockholm. Sustainability 2018, 10, 612. [Google Scholar] [CrossRef] [Green Version]
- Ehnert, F.; Kern, F.; Borgström, S.; Gorissen, L.; Maschmeyer, S.; Egermann, M. Urban sustainability transitions in a context of multi-level governance: A comparison of four European states. Environ. Innov. Soc. Transit. 2018, 26, 101–116. [Google Scholar] [CrossRef]
- Baibarac, C.; Petrescu, D. Open-source Resilience: A Connected Commons-based Proposition for Urban Transformation. Procedia Eng. 2017, 198, 227–239. [Google Scholar] [CrossRef]
- Bulkeley, H.; Coenen, L.; Frantzeskaki, N.; Hartmann, C.; Kronsell, A.; Mai, L.; Marvin, S.; McCormick, K.; Van Steenbergen, F.; Palgan, Y.V. Urban living labs: Governing urban sustainability transitions. Curr. Opin. Environ. Sustain. 2016, 22, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Radywyl, N.; Biggs, C. Reclaiming the commons for urban transformation. J. Clean. Prod. 2013, 50, 159–170. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Schläpfer, M.; Bettencourt, L.M.A.; Grauwin, S.; Raschke, M.; Claxton, R.; Smoreda, Z.; West, G.B.; Ratti, C. The scaling of human interactions with city size. J. R. Soc. Interface 2014, 11, 20130789. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape Connectivity: A graph theory perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Yu, D.; Xun, B.; Shi, P.; Shao, H.; Liu, Y. Ecological restoration planning based on connectivity in an urban area. Ecol. Eng. 2012, 46, 24–33. [Google Scholar] [CrossRef]
- Ahern, J. Green infrastructure for cities: The spatial dimension. In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; IWA Publishing: London, UK, 2007; p. 283. [Google Scholar]
- DesLauriers, M.R.; Asgary, A.; Nazarnia, N.; Jaeger, J.A. Implementing the connectivity of natural areas in cities as an indicator in the City Biodiversity Index (CBI). Ecol. Indic. 2018, 94, 99–113. [Google Scholar] [CrossRef]
- Pozoukidou, G. Designing a green infrastructure network for metropolitan areas: A spatial planning approach. Euro-Mediterranean J. Environ. Integr. 2020, 5, 1–15. [Google Scholar] [CrossRef]
- Armitage, D.; Béné, C.; Charles, A.; Johnson, D.S.; Allison, E.H. The Interplay of Well-being and Resilience in Applying a Social-Ecological Perspective. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- McPhearson, T.; Pickett, S.T.A.; Grimm, N.B.; Niemelä, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S. Advancing Urban Ecology toward a Science of Cities. Bioscience 2016, 66, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Ban, N.C.; Mills, M.; Tam, J.; Hicks, C.C.; Klain, S.; Stoeckl, N.; Bottrill, M.C.; Levine, J.; Pressey, R.L.; Satterfield, T.; et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 2013, 11, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Partelow, S. Coevolving Ostrom’s social–ecological systems (SES) framework and sustainability science: Four key co-benefits. Sustain. Sci. 2016, 11, 399–410. [Google Scholar] [CrossRef]
- Egerer, M.; Fouch, N.; Anderson, E.C.; Clarke, M. Socio-ecological connectivity differs in magnitude and direction across urban landscapes. Sci. Rep. 2020, 10, 4252. [Google Scholar] [CrossRef]
- Cumming, G. Spatial resilience: Integrating landscape ecology, resilience, and sustainability. Landsc. Ecol. 2011, 26, 899–909. [Google Scholar] [CrossRef]
- Frank, B. Urban Systems: A Socio-Ecological System Perspective. Sociol. Int. J. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Dow, K. Social dimensions of gradients in urban ecosystems. Urban. Ecosyst. 2000, 4, 255–275. [Google Scholar] [CrossRef]
- Ignatieva, M.; Stewart, G.H.; Meurk, C. Planning and design of ecological networks in urban areas. Landsc. Ecol. Eng. 2010, 7, 17–25. [Google Scholar] [CrossRef]
- Samuelsson, K.; Barthel, S.; Colding, J.; Macassa, G.; Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. OSF Prepr. 2020. [Google Scholar] [CrossRef]
- Suweis, S.; D’Odorico, P. Early Warning Signs in Social-Ecological Networks. PLoS ONE 2014, 9, e101851. [Google Scholar] [CrossRef] [Green Version]
- Baggio, J.A.; Hillis, V. Managing ecological disturbances: Learning and the structure of social-ecological networks. Environ. Model. Softw. 2018, 109, 32–40. [Google Scholar] [CrossRef]
- Mayer, M. The onward sweep of social capital: Causes and consequences for understanding cities, communities and urban movements. Int. J. Urban. Reg. Res. 2003, 27, 110–132. [Google Scholar] [CrossRef]
- Adger, W.N. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Cook, E.M.; Hall, S.J.; Larson, K.L. Residential landscapes as social-ecological systems: A synthesis of multi-scalar interactions between people and their home environment. Urban. Ecosyst. 2012, 15, 19–52. [Google Scholar] [CrossRef]
- Hope, D.; Gries, C.; Zhu, W.; Fagan, W.F.; Redman, C.L.; Grimm, N.B.; Nelson, A.L.; Martin, C.; Kinzig, A. Socioeconomics Drive Urban Plant Diversity. Urban. Ecology 2008, 100, 339–347. [Google Scholar] [CrossRef]
- Watson, R.T.; Rosswall, T.; Steiner, A.; Töpfer, K.; Arico, S.; Bridgewater, P. Ecosystems and Human Well-Being; Watson, R.T., Rosswall, T., Steiner, A., Töpfer, K., Arico, S., Bridgewater, P., Eds.; Millenium Assessments; World Resources Institute: Washington, DC, USA, 2005; Volume 5, ISBN 1559634022. [Google Scholar]
- Baró, F.; Haase, D.; Gomez-Baggethun, E.; Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Cadenasso, M.; Pickett, S.; Grove, J. Dimensions of ecosystem complexity: Heterogeneity, connectivity, and history. Ecol. Complex. 2006, 3, 1–12. [Google Scholar] [CrossRef]
- Dobbs, C.; Hernández-Moreno, Á.; Reyes-Paecke, S.; Miranda, M.D. Exploring temporal dynamics of urban ecosystem services in Latin America: The case of Bogota (Colombia) and Santiago (Chile). Ecol. Indic. 2018, 85, 1068–1080. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.; McPhearson, T. The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios. Environ. Sci. Policy 2016, 62, 57–68. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyytimäki, J.; Petersen, L.K.; Normander, B.; Bezák, P. Nature as a nuisance? Ecosystem services and disservices to urban lifestyle. Environ. Sci. 2008, 5, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; Lebuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef]
- Laband, D.N. The neglected stepchildren of forest-based ecosystem services: Cultural, spiritual, and aesthetic values. For. Policy Econ. 2013, 35, 39–44. [Google Scholar] [CrossRef]
- Nesbitt, L.; Hotte, N.; Barron, S.; Cowan, J.; Sheppard, S.R. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban For. Urban Green. 2017, 25, 103–111. [Google Scholar] [CrossRef]
- Johnson, G.; Bagstad, K.J.; Snapp, R.R.; Villa, F. Service Path Attribution Networks (SPANs): Spatially Quantifying the Flow of Ecosystem Services from Landscapes to People; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2010; Volume 6016, pp. 238–253. [Google Scholar]
- Ossola, A.; Locke, D.H.; Lin, B.; Minor, E. Yards increase forest connectivity in urban landscapes. Landsc. Ecol. 2019, 34, 2935–2948. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban. Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Ernstson, H.; Van Der Leeuw, S.; Redman, C.L.; Meffert, D.J.; Davis, G.E.; Alfsen, C.; Elmqvist, T. Urban Transitions: On Urban Resilience and Human-Dominated Ecosystems. Ambiology 2010, 39, 531–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egerer, M.; Anderson, E. Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes. Land 2020, 9, 530. https://doi.org/10.3390/land9120530
Egerer M, Anderson E. Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes. Land. 2020; 9(12):530. https://doi.org/10.3390/land9120530
Chicago/Turabian StyleEgerer, Monika, and Elsa Anderson. 2020. "Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes" Land 9, no. 12: 530. https://doi.org/10.3390/land9120530
APA StyleEgerer, M., & Anderson, E. (2020). Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes. Land, 9(12), 530. https://doi.org/10.3390/land9120530