Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China
Abstract
:1. Introduction
2. Theoretical Analysis
- How do the land registration and adjustment experiences affect farmers’ adoption of agricultural machinery?
- Can land registration with adjustment encourage farmers to adopt agricultural machinery?
3. Data Source, Variable Definition, and Empirical Approach
3.1. Data Source
3.2. Variable Definition
3.2.1. Dependent Variable
3.2.2. Predicator Variables
3.2.3. Control Variables
3.3. Method
4. Results
4.1. Descriptive Results
4.2. Empirical Results
4.2.1. Impacts of Registration and Adjustment on Agricultural Machinery Adoption
4.2.2. Estimated Results of Robustness Tests
5. Discussion
6. Conclusions and Implications
- Land registration does not affect the adoption of agricultural machinery.
- Adjustment experience has a negative impact on the adoption of agricultural machinery.
- The interaction of land registration and adjustment experience has a positive impact on the adoption of agricultural machinery.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pingali, P. Agricultural Mechanization: Adoption Patterns and Economic Impact. Handbook Agric. Econ. 2007, 3, 2779–2805. [Google Scholar]
- Sims, B.; Kienzle, J. Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It? Agriculture 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.Q.; Warr, P. Land Consolidation as Technical Change: Economic Impacts in Rural Vietnam. World Dev. 2020, 127, 1047. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Rahut, D.B.; Ali, A.; Gérard, B.; Erenstein, O. Enhancing Smallholder Access to Agricultural Machinery Services: Lessons from Bangladesh. J. Dev. Stud. 2017, 53, 1502–1517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Duan, F.; Mao, Z. Empirical Study on the Sustainability of China’s Grain Quality Improvement: The Role of Transportation, Labor, and Agricultural Machinery. Int. J. Environ. Res. Public Health 2018, 15, 271. [Google Scholar] [CrossRef] [Green Version]
- Yi, Q.; Chen, M.; Sheng, Y.; Huang, J. Mechanization Services, Farm Productivity and Institutional Innovation in China. China Agric. Econ. Rev. 2019. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Thomas, R. Mechanization Outsourcing Clusters and Division of Labor in Chinese Agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Devkota, R.; Pant, L.P.; Gartaula, H.N.; Patel, K.; Gauchan, D.; Hambly-Odame, H.; Thapa, B.; Raizada, M.N. Responsible Agricultural Mechanization Innovation for the Sustainable Development of Nepal’s Hillside Farming System. Sustainability 2020, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Xu, D.-D.; Zeng, M.; Qi, Y.-B. Does Labor Off-Farm Employment Inevitably Lead to Land Rent Out? Evidence from China. J. Mt. Sci. 2019, 16, 689–700. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the World’s Countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Huang, K.; Deng, X.; Liu, Y.; Yong, Z.; Xu, D. Does Off-Farm Migration of Female Laborers Inhibit Land Transfer? Evidence from Sichuan Province, China. Land 2020, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Yong, Z.; Deng, X.; Zhuang, L.; Qing, C. Rural-Urban Migration and Its Effect on Land Transfer in Rural China. Land 2020, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y. Prohibition of Factor Market Exchanges and Technological Choice in Chinese Agriculture. J. Dev. Stud. 1991, 27, 1–15. [Google Scholar] [CrossRef]
- Belton, B.; Filipski, M. Rural Transformation in Central Myanmar: By How Much, and for Whom? J. Rural Stud. 2019, 67, 166–176. [Google Scholar] [CrossRef]
- Ma, W.; Renwick, A.; Grafton, Q. Farm Machinery Use, Off-Farm Employment and Farm Performance in China. Aust. J. Agric. Resour. Econ. 2018, 62, 279–298. [Google Scholar] [CrossRef]
- Adu-Baffour, F.; Daum, T.; Birner, R. Can Small Farms Benefit from Big Companies’ Initiatives to Promote Mechanization in Africa? A Case Study from Zambia. Food Policy 2019, 84, 133–145. [Google Scholar] [CrossRef]
- Paudel, G.P.; KC, D.B.; Justice, S.E.; McDonald, A.J. Scale-Appropriate Mechanization Impacts on Productivity among Smallholders: Evidence from Rice Systems in the Mid-Hills of Nepal. Land Use Policy 2019, 85, 104–113. [Google Scholar] [CrossRef]
- Li, W.; Wei, X.; Zhu, R.; Guo, K. Study on Factors Affecting the Agricultural Mechanization Level in China Based on Structural Equation Modeling. Sustainability 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Kansanga, M.; Andersen, P.; Kpienbaareh, D.; Mason-Renton, S.; Atuoye, K.; Sano, Y.; Antabe, R.; Luginaah, I. Traditional Agriculture in Transition: Examining the Impacts of Agricultural Modernization on Smallholder Farming in Ghana under the New Green Revolution. Int. J. Sustain. Dev. World Ecol. 2019, 26, 11–24. [Google Scholar] [CrossRef]
- Mottaleb, K.A. Perception and Adoption of a New Agricultural Technology: Evidence from a Developing Country. Technol. Soc. 2018, 55, 126–135. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Landslides and Cropland Abandonment in China’s Mountainous Areas: Spatial Distribution, Empirical Analysis and Policy Implications. Sustainability 2018, 10, 3909. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Xu, D.; Qi, Y.; Zeng, M. Labor Off-Farm Employment and Cropland Abandonment in Rural China: Spatial Distribution and Empirical Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J. China’s Success in Increasing Per Capita Food Production. J. Exp. Bot. 2011, 62, 3707–3711. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X. Pursuing Sustainable Productivity with Millions of Smallholder Farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Ma, L.; Long, H.; Zhang, Y.; Tu, S.; Ge, D.; Tu, X. Agricultural Labor Changes and Agricultural Economic Development in China and Their Implications for Rural Vitalization. J. Geogr. Sci. 2019, 29, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Xu, Y.; Zhou, N.; He, Z.; Zhang, L. How Did Land Titling Affect China’s Rural Land Rental Market? Size, Composition and Efficiency. Land Use Policy 2019, 82, 609–619. [Google Scholar] [CrossRef]
- Ren, G.; Zhu, X.; Heerink, N.; Feng, S.; van Ierland, E. Perceptions of Land Tenure Security in Rural China: The Impact of Land Reallocations and Certification. Soc. Nat. Resour. 2019, 32, 1399–1415. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Rural Land System Reforms in China: History, Issues, Measures and Prospects. Land Use Policy 2020, 91, 104330. [Google Scholar] [CrossRef]
- Lemel, H. Land Titling: Conceptual, Empirical and Policy Issues. Land Use Policy 1988, 5, 273–290. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors Associated with Small-Scale Agricultural Machinery Adoption in Bangladesh: Census Findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Alston, L.J.; Libecap, G.D.; Schneider, R. The Determinants and Impact of Property Rights: Land Titles on the Brazilian Frontier. J. Law Econ. Organ. 1996, 12, 25–61. [Google Scholar] [CrossRef]
- Bambio, Y.; Agha, S.B. Land Tenure Security and Investment: Does Strength of Land Right Really Matter in Rural Burkina Faso? World Dev. 2018, 111, 130–147. [Google Scholar] [CrossRef]
- Higgins, D.; Balint, T.; Liversage, H.; Winters, P. Investigating the Impacts of Increased Rural Land Tenure Security: A Systematic Review of the Evidence. J. Rural Stud. 2018, 61, 34–62. [Google Scholar] [CrossRef]
- Goldstein, M.; Udry, C. The Profits of Power: Land Rights and Agricultural Investment in Ghana. J. Polit. Econ. 2008, 116, 981–1022. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Heerink, N.; van Ierland, E.; van den Berg, M.; Shi, X. Land Tenure Security and Land Investments in Northwest China. China Agric. Econ. Rev. 2013, 5, 281–307. [Google Scholar] [CrossRef]
- Lovo, S. Tenure Insecurity and Investment in Soil Conservation. Evidence from Malawi. World Dev. 2016, 78, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Beekman, G.; Bulte, E.H. Social Norms, Tenure Security and Soil Conservation: Evidence from Burundi. Agric. Syst. 2012, 108, 50–63. [Google Scholar] [CrossRef]
- Domeher, D.; Abdulai, R. Land Registration, Credit and Agricultural Investment in Africa. Agric. Financ. Rev. 2012, 72, 87–103. [Google Scholar] [CrossRef]
- Goldstein, M.; Houngbedji, K.; Kondylis, F.; O’Sullivan, M.; Selod, H. Formalization without Certification? Experimental Evidence on Property Rights and Investment. J. Dev. Econ. 2018, 132, 57–74. [Google Scholar] [CrossRef]
- Brasselle, A.-S.; Gaspart, F.; Platteau, J.-P. Land Tenure Security and Investment Incentives: Puzzling Evidence from Burkina Faso. J. Dev. Econ. 2002, 67, 373–418. [Google Scholar] [CrossRef]
- Hong, W.; Luo, B.; Hu, X. Land Titling, Land Reallocation Experience, and Investment Incentives: Evidence from Rural China. Land Use Policy 2020, 90, 104271. [Google Scholar] [CrossRef]
- Thaler, R. Toward a Positive Theory of Consumer Choice. J. Econ. Behav. Organ. 1980, 1, 39–60. [Google Scholar] [CrossRef]
- Cassar, A.; Healy, A.; Von Kessler, C. Trust, Risk, and Time Preferences after a Natural Disaster: Experimental Evidence from Thailand. World Dev. 2017, 94, 90–105. [Google Scholar] [CrossRef]
- Thayer, Z.; Barbosa-Leiker, C.; McDonell, M.; Nelson, L.; Buchwald, D.; Manson, S. Early Life Trauma, Post-Traumatic Stress Disorder, and Allostatic Load in a Sample of American Indian Adults. Am. J. Hum. Biol. 2017, 29, e22943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does Early-Life Famine Experience Impact Rural Land Transfer? Evidence from China. Land Use Policy 2019, 81, 58–67. [Google Scholar] [CrossRef]
- Xu, D.; Liu, E.; Wang, X.; Tang, H.; Liu, S. Rural Households’ Livelihood Capital, Risk Perception, and Willingness to Purchase Earthquake Disaster Insurance: Evidence from Southwestern China. Int. J. Environ. Res. Public Health 2018, 15, 1319. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Peng, L.; Liu, S.; Wang, X. Influences of Risk Perception and Sense of Place on Landslide Disaster Preparedness in Southwestern China. Int. J. Disaster Risk Sci. 2018, 9, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Labor Migration and Farmland Abandonment in Rural China: Empirical Results and Policy Implications. J. Environ. Manag. 2019, 232, 738–750. [Google Scholar] [CrossRef]
- Du, J.; Zeng, M.; Xie, Z.; Wang, S. Power of Agricultural Credit in Farmland Abandonment: Evidence from Rural China. Land 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ma, Z.; Deng, X.; Liu, Y.; Huang, K.; Zhou, W.; Yong, Z. Relationships between Land Management Scale and Livelihood Strategy Selection of Rural Households in China from the Perspective of Family Life Cycle. Land 2020, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does Outsourcing Affect Agricultural Productivity of Farmer Households? Evidence from China China Agric. Econ. Rev. 2020. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does Internet Use Help Reduce Rural Cropland Abandonment? Evidence from China. Land Use Policy 2019, 89, 104243. [Google Scholar] [CrossRef]
- Chen, Z.; Huffman, W.E.; Rozelle, S. Farm Technology and Technical Efficiency: Evidence from Four Regions in China. China Econ. Rev. 2009, 20, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Niroula, G.S.; Thapa, G.B. Impacts and Causes of Land Fragmentation, and Lessons Learned from Land Consolidation in South Asia. Land Use Policy 2005, 22, 358–372. [Google Scholar] [CrossRef]
- Zeller, M.; Diagne, A.; Mataya, C. Market Access by Smallholder Farmers in Malawi: Implications for Technology Adoption, Agricultural Productivity and Crop Income. Agric. Econ. 1998, 19, 219–229. [Google Scholar] [CrossRef]
- Min, S.; Waibel, H.; Huang, J. Smallholder Participation in the Land Rental Market in a Mountainous Region of Southern China: Impact of Population Aging, Land Tenure Security and Ethnicity. Land Use Policy 2017, 68, 625–637. [Google Scholar] [CrossRef]
- Gould, K.A. Land Regularization on Agricultural Frontiers: The Case of Northwestern Petén, Guatemala. Land Use Policy 2006, 23, 395–407. [Google Scholar] [CrossRef]
- Jacoby, H.; Minten, B. Land Titles, Investment, and Agricultural Productivity in Madagascar: A Poverty and Social Impact Analysis; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Deininger, K.; Jin, S. The Potential of Land Rental Markets in the Process of Economic Development: Evidence from China. J. Dev. Econ. 2005, 78, 241–270. [Google Scholar] [CrossRef]
- Coase, R.H. The Problem of Social Cost. J. Law Econ. 1960, 3, 87–137. [Google Scholar] [CrossRef]
- Kahneman, D.; Knetsch, J.L.; Thaler, R.H. The Endowment Effect, Loss Aversion, and Status Quo Bias: Anomalies. J. Econ. Perspect. 1991, 5, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, W.; Zeckhauser, R. Status Quo Bias in Decision Making. J. Risk Uncertain. 1988, 1, 7–59. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, J.; Rasul, G.; Liu, S.; Xie, F.; Cao, M.; Liu, E. Household Livelihood Strategies and Dependence on Agriculture in the Mountainous Settlements in the Three Gorges Reservoir Area, China. Sustainability 2015, 7, 4850–4869. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Peng, L.; Liu, S.; Su, C.; Wang, X.; Chen, T. Influences of Migrant Work Income on the Poverty Vulnerability Disaster Threatened Area: A Case Study of the Three Gorges Reservoir Area, China. Int. J. Disaster Risk Reduct. 2017, 22, 62–70. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Sensitivity of Livelihood Strategy to Livelihood Capital: An Empirical Investigation Using Nationally Representative Survey Data from Rural China. Soc. Indic. Res. 2019, 144, 113–131. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, X.; Zhong, F. Machinery Investment Decision and Off-Farm Employment in Rural China. China Econ. Rev. 2012, 23, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Zeng, M.; Xu, D.; Wei, F.; Qi, Y. Household Health and Cropland Abandonment in Rural China: Theoretical Mechanism and Empirical Evidence. Int. J. Environ. Res. Public Health 2019, 16, 3588. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Li, M.; Bell, A.R. Water Security and Irrigation Investment: Evidence from a Field Experiment in Rural Pakistan. Appl. Econ. 2019, 51, 711–721. [Google Scholar] [CrossRef]
Variables | Definition | Mean | Standard Deviation |
---|---|---|---|
Dependent variable | |||
Adoption | 1 if farm household adopts agricultural machinery in any planting grain processes; 0 otherwise | 0.59 | 0.49 |
Predicator variables | |||
Registration | 1 if land right of farm household has been officially registered; 0 otherwise | 0.50 | 0.50 |
Adjustment | 1 if farm household has experienced land adjustment before the land right officially registered; 0 otherwise | 0.95 | 0.21 |
Registration × Adjustment | The interaction item of Registration and Adjustment. 1 if both Registration and Adjustment are equal to 1; 0 otherwise | 0.48 | 0.50 |
Householder-level variables | |||
Gender | 1 if householder is male; 0 female | 0.88 | 0.32 |
Age | Age of householder in years (year) | 52.39 | 10.96 |
Education | 1 if householder has received a high school diploma or above; 0 otherwise | 0.11 | 0.32 |
Health | 1 if householder has a healthy status; 0 otherwise | 0.84 | 0.36 |
Job | 1 if householder engages in agriculture; 0 otherwise | 0.56 | 0.50 |
Household-level variables | |||
Farm employment | The ratio of members engaging in agriculture to total members (%) | 31.46 | 27.51 |
Off-farm employment | The ratio of off-farm members to total members (%) | 27.46 | 26.29 |
Farm income | The ratio of farm income to total income (%) | 50.72 | 39.70 |
Land size | The area that farm household is managing land (mu a) | 9.92 | 28.65 |
Loan | 1 if farm household has borrowed the production fund; 0 otherwise | 0.06 | 0.25 |
Specialty | 1 if farm household is good at planting grain; 0 otherwise | 0.05 | 0.23 |
Cooperation | 1 if farm household belongs to cooperative organization; 0 otherwise | 0.02 | 0.13 |
Subsidy | The amount of agricultural subsidy from government (RMB b) | 0.70 | 0.46 |
Internet | 1 if farm household can use the Internet; 0 otherwise | 0.27 | 0.45 |
Location-level variables | |||
Distance | Distance between household and the nearest business center (Km) | 7.25 | 9.22 |
Plain | 1 if farm household belongs to plain village; 0 otherwise | 0.32 | 0.47 |
Road | The share of concrete road in total road (%) | 59.88 | 29.71 |
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | |
---|---|---|---|---|---|---|
Registration | −0.645 *** | −0.227 | −0.213 | −0.354 | −0.357 | −0.080 |
(0.217) | (0.268) | (0.268) | (0.279) | (0.279) | (0.063) | |
Adjustment | −0.061 | −0.724 *** | −0.729 *** | −0.885 *** | −0.905 *** | −0.203 *** |
(0.154) | (0.232) | (0.231) | (0.236) | (0.237) | (0.053) | |
Registration × Adjustment | 0.691 *** | 0.502 * | 0.489 * | 0.623 ** | 0.635 ** | 0.142 ** |
(0.222) | (0.278) | (0.278) | (0.290) | (0.290) | (0.065) | |
Gender | 0.149 | 0.144 | 0.141 | 0.032 | ||
(0.094) | (0.096) | (0.096) | (0.022) | |||
Age | −0.004 | −0.003 | −0.003 | −0.001 | ||
(0.003) | (0.003) | (0.003) | (0.001) | |||
Education | 0.193 * | 0.134 | 0.136 | 0.030 | ||
(0.103) | (0.104) | (0.103) | (0.023) | |||
Health | 0.121 | 0.072 | 0.081 | 0.018 | ||
(0.087) | (0.089) | (0.089) | (0.020) | |||
Job | 0.035 | 0.149 * | 0.138 | 0.031 | ||
(0.066) | (0.085) | (0.086) | (0.019) | |||
Farm employment | −0.001 | −0.001 | −0.000 | |||
(0.002) | (0.002) | (0.000) | ||||
Off-farm employment | 0.005 *** | 0.005 *** | 0.001 *** | |||
(0.002) | (0.002) | (0.000) | ||||
Farm income | −0.001 | −0.001 | −0.000 | |||
(0.001) | (0.001) | (0.000) | ||||
Land size | 0.003 | 0.003 | 0.001 | |||
(0.003) | (0.003) | (0.001) | ||||
Loan | −0.010 | −0.012 | −0.003 | |||
(0.134) | (0.135) | (0.030) | ||||
Specialty | 0.236 | 0.158 | 0.035 | |||
(0.185) | (0.185) | (0.041) | ||||
Cooperation | 0.007 | 0.006 | 0.001 | |||
(0.259) | (0.260) | (0.058) | ||||
Subsidy | 0.420 *** | 0.424 *** | 0.095 *** | |||
(0.077) | (0.077) | (0.017) | ||||
Internet | 0.243 *** | 0.222 *** | 0.050 *** | |||
(0.074) | (0.075) | (0.017) | ||||
Distance | −0.025 *** | −0.006 *** | ||||
(0.006) | (0.001) | |||||
Plain | 0.488 *** | 0.109 *** | ||||
(0.156) | (0.035) | |||||
Rode | −0.002 | −0.001 | ||||
(0.003) | (0.001) | |||||
Constant | 0.282 * | 0.935 ** | 0.845 * | 0.674 | 1.036 ** | |
(0.150) | (0.384) | (0.438) | (0.455) | (0.471) | ||
County dummies | No | Yes | Yes | Yes | Yes | Yes |
Province dummies | No | Yes | Yes | Yes | Yes | Yes |
Wald χ2 | 15.651 *** | 825.349 *** | 833.258 *** | 875.000 *** | 882.002 *** | 882.002 *** |
R2 | 0.004 | 0.366 | 0.369 | 0.386 | 0.396 | 0.396 |
Obs. | 2934 | 2934 | 2934 | 2934 | 2934 | 2934 |
Model (1) | Model (2) | |
---|---|---|
Registration | −0.223 | −0.570 |
(0.290) | (0.460) | |
Adjustment | −0.737 *** | −1.608 *** |
(0.261) | (0.401) | |
Registration × Adjustment | 0.512 * | 1.080 ** |
(0.301) | (0.483) | |
Gender | 0.199 ** | 0.250 |
(0.101) | (0.173) | |
Age | −0.003 | −0.006 |
(0.003) | (0.006) | |
Education | 0.197 * | 0.211 |
(0.116) | (0.187) | |
Health | 0.068 | 0.118 |
(0.098) | (0.159) | |
Job | 0.070 | 0.223 |
(0.093) | (0.152) | |
Farm employment | −0.000 | −0.001 |
(0.002) | (0.003) | |
Off-farm employment | 0.004 ** | 0.008 *** |
(0.002) | (0.003) | |
Farm income | −0.001 | −0.001 |
(0.001) | (0.002) | |
Land size | −0.001 | 0.006 |
(0.003) | (0.006) | |
Loan | 0.033 | −0.037 |
(0.156) | (0.244) | |
Specialty | −0.050 | 0.255 |
(0.192) | (0.351) | |
Cooperation | −0.151 | −0.109 |
(0.295) | (0.488) | |
Subsidy | 0.417 *** | 0.748 *** |
(0.084) | (0.136) | |
Internet | 0.203 ** | 0.376 *** |
(0.083) | (0.134) | |
Distance | −0.026 *** | −0.044 *** |
(0.006) | (0.010) | |
Plain | 0.453 *** | 0.928 *** |
(0.169) | (0.297) | |
Rode | −0.003 | −0.006 |
(0.003) | (0.005) | |
Constant | 1.004 ** | 1.860 ** |
(0.496) | (0.804) | |
County dummies | Yes | Yes |
Province dummies | Yes | Yes |
Wald χ2 | 753.363 *** | 656.835 *** |
R2 | 0.380 | 0.398 |
Obs. | 2215 | 2934 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Yan, Z.; Xu, D.; Qi, Y. Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China. Land 2020, 9, 89. https://doi.org/10.3390/land9030089
Deng X, Yan Z, Xu D, Qi Y. Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China. Land. 2020; 9(3):89. https://doi.org/10.3390/land9030089
Chicago/Turabian StyleDeng, Xin, Zhongcheng Yan, Dingde Xu, and Yanbin Qi. 2020. "Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China" Land 9, no. 3: 89. https://doi.org/10.3390/land9030089
APA StyleDeng, X., Yan, Z., Xu, D., & Qi, Y. (2020). Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China. Land, 9(3), 89. https://doi.org/10.3390/land9030089