Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of the Respondents
3.2. Farmers’ Positions on Climate Change and Agricultural Greenhouse Gas Emissions
3.2.1. Climate Change and Agriculture
3.2.2. The Role of Agriculture in GHG Mitigation Actions
3.3. Farmers’ Knowledge Levels and Information Sources on GHG Emissions on Their Farms
3.3.1. Knowledge Level and Experience with On-Farm GHG Emissions
3.3.2. Information Sources for Agricultural GHG Emissions
3.3.3. Decision Making for Fertilization
3.4. Policy Options for Reducing Agricultural GHG Emissions
3.4.1. Attitudes towards On-Farm GHG Emission Reduction
3.4.2. Motivating Factors for Reducing GHG Emissions
3.4.3. Data Management Preferences
3.5. Profiles of the Different Farmer Types
3.5.1. Conventional Farmers
3.5.2. Organic Farmers
3.5.3. Farmers Combining Crop Cultivation and Animal Husbandry
3.5.4. Farmers Cultivating Crops without Animal Husbandry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; March, K.J.; Plattner, G.-K.; Allen, S.K.; et al. (Eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A special report of working groups I and II of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Porfirio, L.L.; Newth, D.; Harman, I.N.; Finnigan, J.J.; Cai, Y.Y. Patterns of crop cover under future climates. Ambio 2017, 46, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.B.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nature 2007, 448, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Hyland, J.J.; Jones, D.L.; Parkhill, K.A.; Barnes, A.P.; Williams, A.P. Farmers’ perceptions of climate change: Identifying types. Agric. Hum. Values 2016, 33, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Jänecke, A.; Eisele, M.; Reinmuth, E.; Steinbach, J.; Aurbacher, J. German Farmers’ Perception of Climate Change Effects and Determinants Influencing Their Climate Awareness. In Perspektiven für die Agrar- und Ernährungswirtschaft nach der Liberalisierung; Schriften der Gesellschaft für Wirtschafts- und sozialwissenschaften des Landbaues e.V.; Kühl, R., Aurbacher, J., Herrmann, R., Nuppenau, E.-A., Schmmitz, M., Eds.; German Association of Agricultural Economists (GEWISOLA): Münster-Hiltrup, Germany, 2016; Volume 51, pp. 407–418. [Google Scholar] [CrossRef]
- Mamba, S.F.; Salam, A.; Peter, G. Farmers Perception of Climate Change a Case Study in Swaziland. J. Food Secur. 2015, 3, 47–61. [Google Scholar] [CrossRef]
- Mandleni, B.; Anim, F.D.K. Climate Change Awareness and Decision on Adaptation Measures by Livestock Farmers in South Africa. JAS 2011, 3, 258–268. [Google Scholar] [CrossRef]
- Tzemi, D.; Breen, J.P. Examining Irish farmers’ awareness of climate change and the factors affecting the adoption of an advisory tool for the reduction of GHG emissions. In Proceedings of the 90th Annual Conference of the Agricultural Economics Society, Warwick University, Coventry, UK, 4–6 April 2016; Agricultural Economics Society: Banbury, UK, 2016. [Google Scholar] [CrossRef]
- Poeplau, C.; Schroeder, J.; Gregorich, E.; Kurganova, I. Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America. Land 2019, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Angles, S.; Chinnadurai, M.; Sundar, A. Awareness on Impact of Climate Change on Dryland Agriculture and Coping Mechanisms of Dryland Farmers. Indian J. Agric. Econ. 2011, 66, 365–372. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, U.A.; Rasche, L.; Jantke, K. Farm-level digital monitoring of greenhouse gas emissions from livestock systems could facilitate control, optimisation and labelling. Landbauforsch. J. Sustain. Org. Agric. Syst. 2019, 69, 9–12. [Google Scholar] [CrossRef]
- Begum, K.; Kuhnert, M.; Yeluripati, J.; Ogle, S.; Parton, W.; Kader, M.A.; Smith, P. Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land 2018, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Francesco, N.T.; Mirella, S.; Simone, R.; Alessandro, F.; Nuala, F.; Pete, S. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 2007, 118, 6–28. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, P.V., Zhai, H.O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., Eds.; World Meteorological Organization, United Nations Environmental Programme: Geneva, Switzerland; Nairobi, Kenia, 2018; pp. 3–24. [Google Scholar]
- Shortle, J.S.; Horan, R.D. The economics of nonpoint pollution control. J. Econ. Surv. 2001, 15, 255–289. [Google Scholar] [CrossRef]
- Charkovska, N.; Horabik-Pyzel, J.; Bun, R.; Danylo, O.; Nahorski, Z.; Jonas, M.; Xiangyang, X. High-resolution spatial distribution and associated uncertainties of greenhouse gas emissions from the agricultural sector. Mitig. Adapt. Strateg. Glob. Chang. 2018, 24, 881–905. [Google Scholar] [CrossRef] [Green Version]
- Baumol, W.J.; Oates, W.E. The Theory of Environmental Policy, 2nd ed.; Prentice-Hall: Englewood-Cliffs, NJ, USA, 1975. [Google Scholar]
- Lipsey, R.G.; Lancaster, K. The General Theory of Second Best. Rev. Econ. Stud. 1956, 24, 11–32. [Google Scholar] [CrossRef]
- BMUB. Aktionsprogramm Klimaschutz 2020; Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Berlin, Germany, 2014; p. 84. [Google Scholar]
- BMUB. Klimaschutzplan 2050—Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung; Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Berlin, Germany, 2016; p. 92. [Google Scholar]
- Bazerman, M.H. Environment, Ethics, and Behavior. The Psychology of Environmental Valuation and Degradation, 1st ed.; New Lexington Press: San Francisco, CA, USA, 1997. [Google Scholar]
- Mills, J.; Gaskell, P.; Ingram, J.; Dwyer, J.; Reed, M.; Short, C. Engaging farmers in environmental management through a better understanding of behaviour. Agric. Hum. Values 2017, 34, 283–299. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Baath, G.S.; Gowda, P.P.; Kakani, V.G. Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains. Mitig. Adapt. Strateg. Glob. Chang. 2019. [Google Scholar] [CrossRef]
- Denef, K.; Paustian, K.; Archibeque, S.; Biggar, S.; Pape, D. Report of Greenhouse Gas Accounting Tools for Agriculture and Forestry Sectors; Interim report to USDA under Contract No. GS23F8182H; ICF International: Fairfax, VA, USA, 2012. [Google Scholar]
- Colomb, V.; Bernoux, M.; Bockel, L.; Chotte, J.-L.; Martin, S.; Martin-Phipps, C.; Mousset, J.; Tinlot, M.; Touchemoulin, O. Review of GHG Calculators in Agriculture and Forestry Sectors: A Guideline for Appropriate Choice and Use of Landscape Based Tools; French Agency for Environment and Energy Management, French Research Institute for Development, Food and Agricultural Organization: Rome, Italy, 2012; Available online: http://www.fao.org/fileadmin/templates/ex_act/pdf/ADEME/Review_existingGHGtool_VF_UK4.pdf (accessed on 25 April 2020).
- Green, A.; Lewis, K.A.; Tzilivakis, J.; Warner, D.J. Agricultural climate change mitigation: Carbon calculators as a guide for decision making. Int. J. Agric. Sustain. 2017, 15, 645–661. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.A.; Green, A.; Warner, D.J.; Tzilivakis, J. Carbon accounting tools: Are they fit for purpose in the context of arable cropping? Int. J. Agric. Sustain. 2013, 11, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Hillier, J.; Hawes, C.; Squire, G.; Hilton, A.; Wale, S.; Smith, P. The carbon footprints of food crop production. Int. J. Agric. Sustain. 2009, 7, 107–118. [Google Scholar] [CrossRef]
- Burbi, S.; Baines, R.N.; Conway, J.S. Achieving successful farmer engagement on greenhouse gas emission mitigation. Int. J. Agric. Sustain. 2016, 14, 466–483. [Google Scholar] [CrossRef]
- Pretty, J.; Sutherland, W.J.; Ashby, J.; Auburn, J.; Baulcombe, D.; Bell, M.; Bentley, J.; Bickersteth, S.; Brown, K.; Burke, J.; et al. The top 100 questions of importance to the future of global agriculture. Int. J. Agric. Sustain. 2010, 8, 219–236. [Google Scholar] [CrossRef]
- Klerkx, L.; Jansen, J. Building knowledge systems for sustainable agriculture: Supporting private advisors to adequately address sustainable farm management in regular service contacts. Int. J. Agric. Sustain. 2010, 8, 148–163. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Dillon, E.J.; Hennessy, T.; Buckley, C.; Donnellan, T.; Hanrahan, K.; Moran, B.; Ryan, M. Measuring progress in agricultural sustainability to support policy-making. Int. J. Agric. Sustain. 2016, 14, 31–44. [Google Scholar] [CrossRef]
- Barnes, A.; De Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sanchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gomez-Barbero, M. Influencing factors and incentives on the intention to adopt precision agricultural technologies within arable farming systems. Environ. Sci. Policy 2019, 93, 66–74. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Grosjean, G.; Fuss, S.; Koch, N.; Bodirsky, B.L.; De Cara, S.; Acworth, W. Options to overcome the barriers to pricing European agricultural emissions. Clim. Policy 2018, 18, 151–169. [Google Scholar] [CrossRef]
- Abadie, L.M.; Galarraga, I.; Milford, A.B.; Gustavsen, G.W. Using food taxes and subsidies to achieve emission reduction targets in Norway. J. Clean. Prod. 2016, 134, 280–297. [Google Scholar] [CrossRef]
- Fountas, S.; Carli, G.; Sørensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Liakos, B.; Canavari, M.; Wiebensohn, J.; Tisserye, B. Farm management information systems: Current situation and future perspectives. Comput. Electron. Agric. 2015, 115, 40–50. [Google Scholar] [CrossRef] [Green Version]
Statement | All (254) | Conventional (195) | Organic (59) | Animal Husbandry (208) | Crop Cultivation (46) |
---|---|---|---|---|---|
Yes, but I need more information | 153 (60.2%) | 110 (56.4%) | 43 (72.9) | 124 (59.6%) | 29 (63.0%) |
No, and I do not need more information | 101 (39.8%) | 85 (43.6%) | 16 (27.1%) | 84 (40.4%) | 17 (37.0%) |
Yes, I would accept additional time expenditure | 113 (44.5%) | 76 (39.0%) | 37 (62.7%) | 93 (44.7%) | 20 (43.5%) |
No, I do not have enough time to spend on this topic | 141 (55.5%) | 119 (61.0%) | 22 (37.3%) | 115 (55.3%) | 26 (56.5%) |
Yes, if the additional costs are reasonably compensated | 203 (79.9%) | 154 (79.0%) | 49 (83.1%) | 169 (81.2%) | 34 (73.9%) |
No, because the efforts are not justified | 51 (20.1%) | 41 (21.0%) | 10 (16.9%) | 39 (18.8%) | 12 (26.1%) |
Yes, if I could reduce my costs because of it | 205 (80.7%) | 158 (81.0%) | 47 (79.7%) | 173 (83.2%) | 32 (69.6%) |
No, if this causes financial losses | 49 (19.3%) | 37 (19.0%) | 12 (20.3%) | 35 (16.8%) | 14 (30.4%) |
Yes, that is an important topic | 163 (64.2%) | 117 (60.0%) | 46 (78.0%) | 135 (64.9%) | 28 (60.9%) |
No, this is not a relevant topic for me | 91 (35.8%) | 78 (40.0%) | 13 (22.0%) | 73 (35.1%) | 18 (39.1%) |
Yes, if it would result in a competitive advantage (e.g., with an official label) | 166 (65.4%) | 124 (63.6%) | 42 (71.2%) | 139 (66.8%) | 27 (58.7%) |
No, the costs are higher than the benefits | 88 (34.6%) | 71 (36.4%) | 17 (28.8%) | 69 (33.2%) | 19 (41.3%) |
Yes, there is potential for reduction on my farm | 163 (64.2%) | 121 (62.1%) | 42 (71.2%) | 134 (64.4%) | 29 (63.0%) |
No, I am already doing what I can | 91 (35.8%) | 74 (37.9%) | 17 (28.8%) | 74 (35.6%) | 17 (37.0%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jantke, K.; Hartmann, M.J.; Rasche, L.; Blanz, B.; Schneider, U.A. Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers. Land 2020, 9, 130. https://doi.org/10.3390/land9050130
Jantke K, Hartmann MJ, Rasche L, Blanz B, Schneider UA. Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers. Land. 2020; 9(5):130. https://doi.org/10.3390/land9050130
Chicago/Turabian StyleJantke, Kerstin, Martina J. Hartmann, Livia Rasche, Benjamin Blanz, and Uwe A. Schneider. 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers" Land 9, no. 5: 130. https://doi.org/10.3390/land9050130
APA StyleJantke, K., Hartmann, M. J., Rasche, L., Blanz, B., & Schneider, U. A. (2020). Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers. Land, 9(5), 130. https://doi.org/10.3390/land9050130