Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation
Abstract
:1. Introduction
1.1. Lie Symmetry Analysis of Equation (1)
1.2. Optimal System of Algebras
1.3. Similarity Reductions and Exact Solutions
1.3.1. Symmetry Reduction with the Vector Field
1.3.2. Symmetry Reduction with the Vector Field
1.3.3. Symmetry Reduction with the Vector Field
1.3.4. Symmetry Reduction with the Vector Field
1.3.5. Invariant Solutions of Equation (15)
- Step 1:
- Step 2:
- Case 1:
- If , then we have
- Case 2:
- If , , and , then we have
- Case 3:
- If , and , then we have
- Case 4:
- If , and , then we have
- Case 5:
- If , and , then we have
- Case 6:
- If , and , then we have
- Step 3:
- By putting the derivatives of into Equation (17), one can obtain algebraic expressions involving and other parameters. By choosing the value of m according to the steps described above, comparing the coefficients of , performing all the necessary algebraic computations, and utilizing Equations (19)–(26), the solutions of Equation (16) may be derived.
2. Conservation Laws
- The generator determines the conserved vector:
- The generator determines the conserved vector:
- The generator determines the conserved vector:
- The generator determines the conserved vector:
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Lou, S.Y.; Hu, X.R.; Yong, C. Nonlocal symmetries related to Bäcklund transformation and their applications. J. Phys. A Math. Theor. 2012, 45, 155209. [Google Scholar] [CrossRef]
- Buhe, E.; Bluman, G.W. Symmetry reductions, exact solutions, and conservation laws of the generalized Zakharov equations. J. Math. Phys. 2015, 56, 101501. [Google Scholar] [CrossRef]
- Gao, B. Symmetry analysis and explicit power series solutions of the Boussinesq-Whitham-Broer-Kaup equation. Waves Random Complex Media 2016, 27, 700–710. [Google Scholar] [CrossRef]
- Feng, L.L.; Tian, S.F.; Zhang, T.T.; Zhou, J. Lie symmetries, conservation laws and analytical solutions for two-component integrable equations. Chin. J. Phys. 2017, 55, 996–1010. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 2011, 44, 432002. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
- Benjamin, T.B.; Olver, P.J. Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 1982, 125, 137–185. [Google Scholar] [CrossRef]
- Ramani, A. Inverse scattering, Ordinary differential equation of Painleve-type and Hirota’s formalism. Ann. Acad. Sci. 1981, 373, 54–67. [Google Scholar] [CrossRef]
- Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. Transformation groups for soliton equations. Publ. Res. Inst. Math. Sci. 1982, 18, 1077–1110. [Google Scholar] [CrossRef]
- Hu, X.B. Hirota-type equation, soliton solutions, Bäcklund transformations and conservation laws. J. Partial Differ. Equ. 1990, 3, 87–95. [Google Scholar]
- Karsau, A.; Sarkovich, S.; Turhan, R. A new integrable generalization of the Korteweg-de Vries equation. J. Math. Phys. 2008, 49, 1–10. [Google Scholar]
- Zhao, J.X.; Tam, H.W. Soliton solutions of a coupled Ramani equation. Appl. Math. Lett. 2006, 19, 307–313. [Google Scholar] [CrossRef]
- Wazwaz, A. Multiple soliton solutions for a new coupled Ramani equation. Phys. Scr. 2011, 83, 015002. [Google Scholar] [CrossRef]
- Wazwaz, A. A coupled Ramani equation: multiple soliton solutions. J. Math. Chem. 2012, 52, 2133–2140. [Google Scholar] [CrossRef]
- Wazwaz, A.; Triki, H. Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation. Appl. Math. Comput. 2010, 216, 332–336. [Google Scholar] [CrossRef]
- Chen, J.; Bao-Feng, F.; Chen, Y. Bilinear Bäcklund transformation, lax pair and multi-soliton solution for a vector Ramani equation. Mod. Phys. Lett. B 2017, 31, 1750133. [Google Scholar] [CrossRef]
- Yang, X.F.; Deng, Z.C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Differ. Equ. 2015, 2015, 117. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Yan, Z. New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method. Phys. Lett. A 1996, 224, 77–84. [Google Scholar] [CrossRef]
- Ma, W.X. A refined invariant subspace method and applications to evolution equations. Sci. China Math. 2012, 55, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X.; Liu, Y. Invariant subspaces and exact solutions of a class of dispersive evolution equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3795–3801. [Google Scholar] [CrossRef]
- Inc, M.; Hashemi, M.S.; Aliyu, A.I. Exact solutions and conservation laws of the Bogoyavlenskii equation. Acta Phys. Pol. A 2018, 133, 1133–1137. [Google Scholar] [CrossRef]
- Dimas, S.; Tsoubelis, D. A New Symmetry-Finding Package for Mathematica. In Proceedings of the 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 24–31 October 2004; University of Cyprus: Nicosia, Cyprus, 2005; pp. 64–70. [Google Scholar]
Cumm | ||||
---|---|---|---|---|
0 | 0 | 0 | ||
0 | 0 | 0 | − | |
0 | 0 | 0 | 3 | |
0 |
Adj | ||||
---|---|---|---|---|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliyu, A.I.; Inc, M.; Yusuf, A.; Baleanu, D. Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation. Symmetry 2018, 10, 341. https://doi.org/10.3390/sym10080341
Aliyu AI, Inc M, Yusuf A, Baleanu D. Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation. Symmetry. 2018; 10(8):341. https://doi.org/10.3390/sym10080341
Chicago/Turabian StyleAliyu, Aliyu Isa, Mustafa Inc, Abdullahi Yusuf, and Dumitru Baleanu. 2018. "Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation" Symmetry 10, no. 8: 341. https://doi.org/10.3390/sym10080341
APA StyleAliyu, A. I., Inc, M., Yusuf, A., & Baleanu, D. (2018). Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation. Symmetry, 10(8), 341. https://doi.org/10.3390/sym10080341