Quantum-Gravitational Trans-Planckian Energy of a Time-Dependent Black Hole
Abstract
:1. Introduction
2. Physical Origin of Trans-Planckian Energy
3. Time-Dependent Solutions
3.1. Review of Einstein-Scalar Case
3.2. Einstein–Maxwell-Scalar System
4. Near-Horizon Dynamics
4.1. Four-Velocity of an Infalling Observer
4.2. Trans-Planckian Energy Near Horizon
4.3. On the Boundary Conditions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mathur, S.D. The Information paradox: A Pedagogical introduction. Class. Quant. Grav. 2009, 26, 224001. [Google Scholar] [CrossRef]
- Skenderis, K.; Taylor, M. The fuzzball proposal for black holes. Phys. Rep. 2008, 467, 117. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? J. High Energy Phys. 2013, 1302, 062. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Pirandola, S.; Zyczkowski, K. Better Late than Never: Information Retrieval from Black Holes. Phys. Rev. Lett. 2013, 110, 101301. [Google Scholar] [CrossRef] [PubMed]
- Park, I.Y. Indication for unsmooth horizon induced by quantum gravity interaction. Eur. Phys. J. C 2014, 74, 3143. [Google Scholar] [CrossRef]
- Park, I.Y. Quantum-corrected Geometry of Horizon Vicinity. Fortschr. Phys. 2017, 65, 1700038. [Google Scholar] [CrossRef]
- Nurmagambetov, A.J.; Park, I.Y. Quantum-induced trans-Planckian energy near horizon. J. High Energy Phys. 2018, 1805, 167. [Google Scholar] [CrossRef]
- Nurmagambetov, A.J.; Park, I.Y. On Firewalls in quantum-corrected General Relativity. arXiv 2019, arXiv:1909.10048. [Google Scholar]
- Park, I.Y. Hypersurface foliation approach to renormalization of ADM formulation of gravity. Eur. Phys. J. C 2015, 75, 459. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M.J.G. One loop divergencies in the theory of gravitation. Ann. Poincare Phys. Theor. 1974, 20, 69–94. [Google Scholar]
- Hadad, M.; Rosenblum, L. Derivation of Hamilton-like equations on a non-Cauchy hypersurface and their expected connection to quantum gravity theories. arXiv 2019, arXiv:1905.10665. [Google Scholar]
- Park, I.Y. One-loop renormalization of a gravity-scalar system. Eur. Phys. J. C 2017, 77, 337. [Google Scholar] [CrossRef]
- Park, I. Foliation-Based Approach to Quantum Gravity and Applications to Astrophysics. Universe 2019, 5, 71. [Google Scholar] [CrossRef]
- Kawai, H.; Yokokura, Y. A Model of Black Hole Evaporation and 4D Weyl Anomaly. Universe 2017, 3, 51. [Google Scholar] [CrossRef]
- Park, I.Y. “Quantum violation” of Dirichlet boundary condition. Phys. Lett. B 2017, 765, 260. [Google Scholar] [CrossRef]
- James, F.; Park, I.Y. Quantum Gravitational Effects on the Boundary. Theor. Math. Phys. 2018, 195, 607, [Teor. Mat. Fiz. 2018, 195, 130. [Google Scholar] [CrossRef]
- Murata, K.; Kinoshita, S.; Tanahashi, N. Non-equilibrium Condensation Process in a Holographic Superconductor. J. High Energy Phys. 2010, 1007, 050. [Google Scholar] [CrossRef]
- Diffgeo.m package for Wolfram Mathematica. Available online: http://people.brandeis.edu/~headrick/Mathematica/diffgeo.m (accessed on 8 May 2012).
- Visser, M. The Kerr spacetime: A Brief introduction. arXiv 2007, arXiv:0706.0622. [Google Scholar]
- Park, I.Y. On the pattern of black hole information release. Int. J. Mod. Phys. A 2014, 29, 1450047. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.A.; Thorlacius, L. Pure states and black hole complementarity. Phys. Rev. D 2013, 88, 044012. [Google Scholar] [CrossRef]
- Carter, B. Global structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559. [Google Scholar] [CrossRef]
- Candelas, P. Vacuum Polarization in Schwarzschild Space-Time. Phys. Rev. D 1980, 21, 2185. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Frolov, V.P.; Novikov, I.D. Black Hole Physics: Basic Concepts and New Developments; Springer: Berlin, Germany, 1998. [Google Scholar]
- Mukhanov, V.F.; Winitzki, S. Introduction to Quantum Effects in Gravity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Chadburn, S.; Gregory, R. Time dependent black holes and scalar hair. Class. Quant. Grav. 2014, 31, 195006. [Google Scholar] [CrossRef]
- Lake, K.; Zannias, T. Global structure of Kerr-de Sitter spacetimes. Phys. Rev. D 2015, 92, 084003. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurmagambetov, A.J.; Park, I.Y. Quantum-Gravitational Trans-Planckian Energy of a Time-Dependent Black Hole. Symmetry 2019, 11, 1303. https://doi.org/10.3390/sym11101303
Nurmagambetov AJ, Park IY. Quantum-Gravitational Trans-Planckian Energy of a Time-Dependent Black Hole. Symmetry. 2019; 11(10):1303. https://doi.org/10.3390/sym11101303
Chicago/Turabian StyleNurmagambetov, A. J., and I. Y. Park. 2019. "Quantum-Gravitational Trans-Planckian Energy of a Time-Dependent Black Hole" Symmetry 11, no. 10: 1303. https://doi.org/10.3390/sym11101303
APA StyleNurmagambetov, A. J., & Park, I. Y. (2019). Quantum-Gravitational Trans-Planckian Energy of a Time-Dependent Black Hole. Symmetry, 11(10), 1303. https://doi.org/10.3390/sym11101303