On Meromorphic Functions Defined by a New Operator Containing the Mittag–Leffler Function
Abstract
:1. Introduction
2. Main Result
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Exton, H. q-Hypergeometric Functions and Applications, Ellis Horwood Series: Mathematics and Its Applications; Ellis Horwood: Chichester, UK, 1983. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood: Chichester, UK, 1985. [Google Scholar]
- Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transforms Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Integral operator defined by q-analogue of Liu–Srivastava operator. Stud. Univ. Babes-Bolyai Math. 2013, 58, 529–537. [Google Scholar]
- Murugusundaramoorthy, G.; Janani, T. Meromorphic parabolic starlike functions associated with q-hypergeometric series. ISRN Math. Anal. 2014, 2014, 923607. [Google Scholar] [CrossRef]
- Mittag–Leffler, G.M. Sur la nouvelle fonction Eα(x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Mittag–Leffler, G.M. Sur la representation analytique d’une branche uniforme d’une fonction monogene. Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Wiman, A. Über den fundamentalsatz in der teorie der funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Attiya, A.A. Some applications of Mittag–Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef]
- Gupta, I.S.; Debnath, L. Some properties of the Mittag–Leffler functions. Integral Transforms Spec. Funct. 2007, 18, 329–336. [Google Scholar] [CrossRef]
- Răducanu, D. Third-Order differential subordinations for analytic functions associated with generalized Mittag–Leffler functions. Mediterr. J. Math. 2017, 14, 167. [Google Scholar] [CrossRef]
- Rehman, H.; Darus, M.; Salah, J. Coefficient properties involving the generalized k-Mittag–Leffler functions. Transylv. J. Math. Mech. 2017, 9, 155–164. [Google Scholar]
- Salah, J.; Darus, M. A note on generalized Mittag–Leffler function and application. Far East J. Math. Sci. 2011, 48, 33–46. [Google Scholar]
- Srivastava, H.M.; Frasin, B.A.; Pescar, V. Univalence of integral operators involving Mittag–Leffler functions. Appl. Math. Inf. Sci. 2017, 11, 635–641. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag–Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Răducanu, D. On partial sums of normalized Mittag–Leffler functions. An. Şt. Univ. Ovidius Constanţa 2017, 25, 123–133. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Aouf, M.K. Hadamard product of certain meromorphic starlike and convex functions. Comput. Math. Appl. 2009, 57, 1102–1106. [Google Scholar] [CrossRef]
- Liu, J.-L.; Srivastava, H.M. Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Math. Comput. Model. 2004, 39, 21–34. [Google Scholar] [CrossRef]
- Liu, J.-L.; Srivastava, H.M. A linear operator and associated families of meromorphically multivalent functions. J. Math. Anal. Appl. 2001, 259, 566–581. [Google Scholar] [CrossRef]
- Ganigi, M.R.; Uralegaddi, B.A. New criteria for meromorphic univalent functions. Bulletin Mathèmatique de la Sociètè des Sciences Mathèmatiques de la Rèpublique Socialiste de Roumanie Nouvelle Sèerie 1989, 33, 9–13. [Google Scholar]
- Yang, D. On a class of meromorphic starlike multivalent functions. Bull. Inst. Math. Acad. Sin. 1996, 24, 151–157. [Google Scholar]
- Challab, K.; Darus, M.; Ghanim, F. On a certain subclass of meromorphic functions defined by a new linear differential operator. J. Math. Fund. Sci. 2017, 49, 269–282. [Google Scholar] [CrossRef]
- Elrifai, E.A.; Darwish, H.E.; Ahmed, A.R. On certain subclasses of meromorphic functions associated with certain differential operators. Appl. Math. Lett. 2012, 25, 952–958. [Google Scholar] [CrossRef]
- Lashin, A.Y. On certain subclasses of meromorphic functions associated with certain integral operators. Comput. Math. Appl. 2010, 59, 524–531. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhaddad, S.; Darus, M. On Meromorphic Functions Defined by a New Operator Containing the Mittag–Leffler Function. Symmetry 2019, 11, 210. https://doi.org/10.3390/sym11020210
Elhaddad S, Darus M. On Meromorphic Functions Defined by a New Operator Containing the Mittag–Leffler Function. Symmetry. 2019; 11(2):210. https://doi.org/10.3390/sym11020210
Chicago/Turabian StyleElhaddad, Suhila, and Maslina Darus. 2019. "On Meromorphic Functions Defined by a New Operator Containing the Mittag–Leffler Function" Symmetry 11, no. 2: 210. https://doi.org/10.3390/sym11020210
APA StyleElhaddad, S., & Darus, M. (2019). On Meromorphic Functions Defined by a New Operator Containing the Mittag–Leffler Function. Symmetry, 11(2), 210. https://doi.org/10.3390/sym11020210