Data-Driven Adaptive Iterative Learning Method for Active Vibration Control Based on Imprecise Probability
Abstract
:1. Introduction
2. State–Space Model and P-Type IL Method
3. Dynamic Linearization and MFA Controller Design
4. The Stopping Criteria Design
4.1. Preliminary Notion of Imprecise Probability
4.2. The Diagnosis Method Design
4.2.1. Fault Reliability
4.2.2. Establish Fault Probability Interval
4.2.3. Diagnosis Cost Functions and Decision-Making
5. The Summary of the Proposed Method
6. Numerical Simulations
6.1. FE Modeling and Setting of Controller Parameters
6.2. Harmonic Excitation
6.3. Random Excitation
7. Experiments
7.1. ExperimentSetup
7.2. Modal Analysis
7.3. ExperimentResults
8. Conclusions and Outlooks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruan, X.; Bien, Z.Z.; Wang, Q. Convergence characteristic of proportional-type iterative learning control in the sense of Lebesgue-p norm. IET Control Theory A 2012, 6, 707–714. [Google Scholar] [CrossRef]
- Ajjanaromvat, N.; Parnichkun, M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for disorder gait rehabilitation. Mechatronics 2018, 51, 85–96. [Google Scholar] [CrossRef]
- Xu, J.X.; Huang, D.Q.; Venkatakrisham, V.; Tuong, H. Research on flexible dynamics of a 6-DOF industrial robot and residual vibration control with a pre-adaptive input shaper. J. Mech. Sci. Tecnol. 2019, 33, 1875–1889. [Google Scholar]
- Cao, Z.X.; Zhang, R.D.; Yang, Y.; Lu, J.Y.; Gao, F.R. Iterative learning control and initial value estimation for probe-drogue autonomous aerial refueling of UAVs. Aerosp. Sci. Technol. 2018, 82–83, 583–593. [Google Scholar]
- Freeman, C.T.; Tan, Y. Iterative learning control with mixed constraints for point-to-point tracking. Defence Technol. 2017, 13, 360–366. [Google Scholar]
- Zhu, X.J.; Gao, Z.Y.; Huang, Q.Z.; Yi, J.C. ILC based active vibration control of smart structures. IEEE Int. Conf.Intell. Comput.Intell. Syst. 2009, 2, 236–240. [Google Scholar]
- Tavakolpour, A.R.; Mailah, M.; Intan, Z.; Darus, M.; Tokhi, O. Self-learning active vibration control of a flexible plate structure with piezoelectric actuator. Simul. Model Pract. Theory 2010, 18, 516–532. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Xu, Q.S. Adaptive iterative learning control combined with discrete-time sliding mode control for piezoelectric nanopositioning. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016; pp. 6080–6085. [Google Scholar]
- Xu, J.X.; Wang, W.; Huang, D.Q. Iterative learning in ballistic control. In Proceedings of the 2007 American Control Conference, New York, NY, USA, 11–13 July 2007; pp. 1293–1298. [Google Scholar]
- Tan, Y.; Dai, H.H.; Huang, D.Q.; Xu, J.X. Unified iterative learning control schemes for nonlinear dynamic systems with nonlinear input uncertainties. Automatica 2012, 48, 3173–3182. [Google Scholar] [CrossRef]
- Taher, A.; Marwan, A.; Binish, J. Wavelets approach for the optimal control of vibrating plates by piezoelectric patches. J. Vib. Control 2018, 24, 1101–1108. [Google Scholar]
- Qiu, Z.C.; Zhang, X.T.; Zhang, X.M.; Han, J.D. A vision-based vibration sensing and active control for a piezoelectric flexible cantilever plate. J. Vib. Control 2016, 22, 1320–1337. [Google Scholar] [CrossRef]
- Li, S.Q.; Li, J.; Mo, Y.P. Piezoelectric multimode vibration control for stiffened plate using ADRC-based acceleration compensation. IEEE Trans. Ind. Electron. 2014, 61, 6892–6902. [Google Scholar] [CrossRef]
- Lim, Y.H. Finite-element simulation of closed loop vibration control of a smart plate under transient loading. Smart Mater. Struct. 2003, 12, 272–286. [Google Scholar] [CrossRef]
- Hou, Z.S.; Wang, Z. From model-based control to data-driven control: Survey, classification and perspective. Inform. Sci. 2013, 235, 3–35. [Google Scholar] [CrossRef]
- Hou, Z.S.; Chi, R.H.; Gao, H.J. An overview of dynamic-linearization-based data-driven control applications. IEEE Trans. Ind. Electron. 2017, 64, 4076–4089. [Google Scholar] [CrossRef]
- Wang, Z.S.; He, D.K.; Zhu, X.; Luo, J.H.; Liang, Y.; Wang, X. Data-driven model-free adaptive control of particle quality in drug development phase of spray fluidized-bed granulation process. Complexity 2017, 4960106. [Google Scholar] [CrossRef]
- Bu, X.H.; Cui, L.Z.; Hou, Z.S.; Qian, W. Formation control for a class of nonlinear multiagent systems using model-free adaptive iterative learning. Int. J. Robust. Nonlinear Control 2018, 28, 1402–1412. [Google Scholar] [CrossRef]
- Chi, R.H.; Hou, Z.S. Dual stage optimal iterative learning control for nonlinear non-affine discrete-time system. ActaAutom. Sin. 2007, 33, 1061–1065. [Google Scholar] [CrossRef]
- Bai, L.; Feng, Y.W.; Li, N.; Xue, X.F. Robust model-free adaptive iterative learning control for vibration suppression based on evidential reasoning. Micromachines 2019, 10, 196. [Google Scholar] [CrossRef]
- Jiang, W. A correlation coefficient for belief functions. Int. J Approx. Reason. 2018, 103, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.Q.; Wang, S.P.; Wang, X.J. A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance. Aerosp. Sci. Technol. 2017, 71, 392–401. [Google Scholar] [CrossRef]
- Hable, R. Data-based decisions under imprecise probability and least favorable models. Int. J. Approx. Reason. 2009, 50, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Destercke, S. A k-nearest neighbors method based on imprecise probability. Soft Comput. 2012, 16, 833–844. [Google Scholar] [CrossRef]
- Tien, S.C.; Zou, Q.Z.; Devasia, S. Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation. IEEE T. Contr. Syst. T. 2005, 13, 921–931. [Google Scholar] [CrossRef]
- Matthias, C.M.T. Decision making under uncertainty using imprecise probability. Int. J. Approx. Reason. 2007, 47, 17–29. [Google Scholar]
- Razi, S.; Mollaei, M.R.K.M.; Ghasemi, J. A novel method for classification of BCI multi-class motor imagery task based on Dempster-Shafer theory. Inform. Sci. 2019, 484, 14–26. [Google Scholar] [CrossRef]
- Dong, X.J.; Peng, Z.K.; Ye, L.; Hua, H.X.; Meng, G. Performance evaluation of vibration controller for piezoelectric smart structures in finite element environment. J.Vib. Control. 2014, 20, 2146–2161. [Google Scholar] [CrossRef]
- An, J.Y.; Hu, M.; Fu, L.; Zhan, J.W. A novel fuzzy approach for combining uncertain conflict evidences in the Dempster-Shafer theory. IEEE Access. 2018, 7, 7481–7501. [Google Scholar] [CrossRef]
- Malgaca, L. Integration of active vibration control methods with finite element models of smart laminated composite structures. Compos.Struct. 2010, 92, 1651–1663. [Google Scholar] [CrossRef]
- Saleh, A.R.T.; Mailah, M. Control of resonance phenomenon in flexible structures via active support. J Sound Vib. 2012, 331, 3451–3465. [Google Scholar] [CrossRef]
- Nemanja, D.Z.; Aleksandar, M.S.; Zoran, S.M.; Slobodan, N.S. Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation. J. Intell. Mat. Syst. Struct. 2012, 24, 499–526. [Google Scholar]
Graphite-Epoxy (GE) | Piezoelectric Material |
---|---|
Yong’s modulus () | Elastic stiffness () |
Shear modulus () | |
Piezoelectric stain () | |
Poisson’s ratio | |
Permittivity () | |
Density () | |
Density () | |
Mode | Numerical (Hz) | Experimental (Hz) | Error Percentage |
---|---|---|---|
1 | 5.4377 | 5.326 | 2.1% |
2 | 24.217 | 21.259 | 13.9% |
3 | 28.683 | 31.593 | −9.2% |
Algorithm | Case 1 | Case 2 | Experiment | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Point A | Point B | Sensor a/b | Sensor c | Point A | Point B | Sensor a/b | Sensor c | Sensor a/b | Sensor c | |
Uncontrolled | 2.262 × 10−3 | 8.805 × 10−3 | 7.420 | 4.314 | 3.430 × 10−3 | 12.793 × 10−3 | 9.934 | 5.249 | 3.764 | 2.167 |
P-type IL | 1.526 × 10−3 | 5.909 × 10−3 | 4.590 | 2.706 | 2.238 × 10−3 | 8.169 × 10−3 | 6.323 | 3.356 | 2.563 | 1.488 |
Robust MFA-IL | 1.479 × 10−3 | 5.719 × 10−3 | 4.348 | 2.561 | - | - | - | - | - | - |
Proposed method | 1.488 × 10−3 | 5.763 × 10−3 | 4.413 | 2.598 | 2.080 × 10−3 | 7.590 × 10−3 | 5.800 | 3.065 | 2.480 | 1.444 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Feng, Y.-W.; Li, N.; Xue, X.-F.; Cao, Y. Data-Driven Adaptive Iterative Learning Method for Active Vibration Control Based on Imprecise Probability. Symmetry 2019, 11, 746. https://doi.org/10.3390/sym11060746
Bai L, Feng Y-W, Li N, Xue X-F, Cao Y. Data-Driven Adaptive Iterative Learning Method for Active Vibration Control Based on Imprecise Probability. Symmetry. 2019; 11(6):746. https://doi.org/10.3390/sym11060746
Chicago/Turabian StyleBai, Liang, Yun-Wen Feng, Ning Li, Xiao-Feng Xue, and Yong Cao. 2019. "Data-Driven Adaptive Iterative Learning Method for Active Vibration Control Based on Imprecise Probability" Symmetry 11, no. 6: 746. https://doi.org/10.3390/sym11060746
APA StyleBai, L., Feng, Y.-W., Li, N., Xue, X.-F., & Cao, Y. (2019). Data-Driven Adaptive Iterative Learning Method for Active Vibration Control Based on Imprecise Probability. Symmetry, 11(6), 746. https://doi.org/10.3390/sym11060746