The Study of A New Symmetrical Rod Phase in Mg-Zn-Gd Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Composition
3.2. Morphological Evolution
3.3. Thermal Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, G.; Amiya, K.; Kato, H.; Inoue, A. Structure and mechanical properties of cast quasicrystal-reinforced Mg–Zn–Al–Y base alloys. J. Mater. Res. 2004, 19, 1531–1538. [Google Scholar] [CrossRef]
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951. [Google Scholar] [CrossRef]
- Levine, D.; Steinhardt, P.J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 1984, 53, 2477. [Google Scholar] [CrossRef]
- Fischer, S.; Exner, A.; Zielske, K.; Perlich, J.; Deloudi, S.; Steurer, W.; Lindner, P.; Förster, S. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc. Natl. Acad. Sci. USA 2011, 108, 1810–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gierer, M.; Hove, M.A.; Goldman, A.I.; Shen, Z.; Chang, S.L.; Jenks, C.J.; Zhang, C.M.; Thiel, P.A. Structural Analysis of the Fivefold Symmetric Surface of the A l 70 P d 21 M n 9 Quasicrystal by Low Energy Electron Diffraction. Phys. Rev. Lett. 1997, 78, 467. [Google Scholar] [CrossRef]
- Zoorob, M.E.; Charlton, M.D.B.; Parker, G.J.; Baumberg, J.J.; Netti, M.C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 2000, 404, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Gröbner, J.; Kozlov, A.; Fang, X.Y.; Geng, J.; Nie, J.F.; Schmid-Fetzer, R. Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys. Acta Mater. 2012, 60, 5948–5962. [Google Scholar] [CrossRef]
- Baake, M. Quasicrystals: An Introduction to Structure, Physical Properties and Applications; Suck, J.B., Schreiber, M., Häussler, P., Eds.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Vogel, M.; Kraft, O.; Dehm, G.; Arzt, E. Quasi-crystalline grain-boundary phase in the magnesium die-cast alloy ZA85. Scr. Mater. 2001, 45, 517–524. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, P.; Zhao, D.; Zhou, G.; Teng, X. Melt holding time as an important factor on the formation of quasicrystal phase in Mg67Zn30Gd3 alloy. Phys. B Condens. Matter 2018, 533, 28–32. [Google Scholar] [CrossRef]
- Tanaka, R.; Ohhashia, S.; Fujitaae, N.; Demurabc, M.; Yamamotob, A.; Katod, A.; Tsai, A.P. Application of electron backscatter diffraction (EBSD) to quasicrystal-containing microstructures in the Mg-Cd-Yb system. Acta Mater. 2016, 119, 193–202. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Kwon, H.; Hur, K. Intrinsic photonic wave localization in a three-dimensional icosahedral quasicrystal. Nat. Phys. 2017, 13, 363. [Google Scholar] [CrossRef]
- Huang, H.; Tian, Y.; Yuan, G.; Chen, C.; Ding, W.; Wang, Z. Formation mechanism of quasicrystals at the nanoscale during hot compression of Mg alloys. Scr. Mater. 2014, 78, 61–64. [Google Scholar] [CrossRef]
- Huang, H.; Tian, Y.; Yuan, G.; Chen, C.; Ding, W.; Wang, Z. Precipitation of secondary phase in Mg-Zn-Gd alloy after room-temperature deformation and annealing. J. Mater. Res. Technol. 2018, 7, 135–141. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Yuan, G.; Chen, C. Nanoscale icosahedral quasicrystal phase precipitation mechanism during annealing for Mg–Zn–Gd-based alloys. Mater. Lett. 2014, 130, 236–239. [Google Scholar] [CrossRef]
- Zhang, J.; Teng, X.; Xu, S.; Ge, X.; Leng, J. Temperature dependence of resistivity and crystallization behaviors of amorphous melt-spun ribbon of Mg66Zn30Gd4 alloy. Mater. Lett. 2017, 189, 17–20. [Google Scholar] [CrossRef]
- Gröbner, J.; Kozlova, A.; Fang, X.Y.; Zhu, S.; Nie, J.F. Phase equilibria and transformations in ternary Mg–Gd–Zn alloys. Acta Mater. 2015, 90, 400–416. [Google Scholar] [CrossRef]
- Sugiyama, K.; Yasuda, K.; Ohsuna, T.; Hiraga, K. The structures of hexagonal phases in Mg-Zn-Re (Re= Sm and Gd) alloys. Z. Fur Krist. 1998, 213, 537–543. [Google Scholar] [CrossRef]
- Jiang, H.; Qiao, X.; Xu, C.; Kamado, S.; Wu, K.; Zheng, M. Influence of size and distribution of W-phase on strength and ductility of high strength Mg-5.1 Zn-3.2 Y-0.4 Zr-0.4 Ca alloy processed by indirect extrusion. J. Mater. Sci. Technol. 2018, 34, 277–283. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Feng, Y.; Wu, H.; Zhou, G.; Zuo, M.; Leng, J.; Teng, X. The Study of A New Symmetrical Rod Phase in Mg-Zn-Gd Alloys. Symmetry 2019, 11, 988. https://doi.org/10.3390/sym11080988
Yue J, Feng Y, Wu H, Zhou G, Zuo M, Leng J, Teng X. The Study of A New Symmetrical Rod Phase in Mg-Zn-Gd Alloys. Symmetry. 2019; 11(8):988. https://doi.org/10.3390/sym11080988
Chicago/Turabian StyleYue, Jianhang, Yun Feng, Hao Wu, Guorong Zhou, Min Zuo, Jinfeng Leng, and Xinying Teng. 2019. "The Study of A New Symmetrical Rod Phase in Mg-Zn-Gd Alloys" Symmetry 11, no. 8: 988. https://doi.org/10.3390/sym11080988
APA StyleYue, J., Feng, Y., Wu, H., Zhou, G., Zuo, M., Leng, J., & Teng, X. (2019). The Study of A New Symmetrical Rod Phase in Mg-Zn-Gd Alloys. Symmetry, 11(8), 988. https://doi.org/10.3390/sym11080988