Algebraic DVR Approaches Applied to Describe the Stark Effect
Abstract
:1. Introduction
2. Algebraic DVR Methods in 1D Systems
2.1. 3D Harmonic Oscillator
2.2. HO-DVR Approach
2.3. -UGA
3. Coulombic Potential: Hydrogen Atom
4. Stark Effect
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Light, J.C.; Hamilton, I.P.; Lill, J.V. Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 1985, 82, 1400. [Google Scholar] [CrossRef]
- Light, J.C.; Carrington, T., Jr. Discrete-variable representations and their utilization. Adv. Chem. Phys. 2000, 114, 263. [Google Scholar]
- Littlejohn, R.G.; Cargo, M.; Carrington, T., Jr.; Mitchell, K.A.; Poirier, B. A general framework for discrete variable representation basis sets. J. Chem. Phys. 2002, 116, 8691. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-G.; Carrington, T.J. A discrete variable representation method for studying the rovibrational quantum dynamics of molecules with more than three atoms. Chem. Phys. 2009, 130, 094101. [Google Scholar] [CrossRef] [PubMed]
- Shizgal, B.; Blackmore, R. A discrete ordinate method of solution of linear boundary value and eigenvalue problems. J. Comput. Phys. 1984, 55, 313. [Google Scholar] [CrossRef]
- Shizgal, B.D.; Chen, H. The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions. J. Chem. Phys. 1996, 104, 4137. [Google Scholar] [CrossRef]
- Pérez-Bernal, F.; Arias, J.M.; Carvajal, M.; Gómez-Camacho, J. Configuration localized wave functions: General formalism and applications to vibrational spectroscopy of diatomic molecules. Phys. Rev. A 2000, 61, 042504. [Google Scholar] [CrossRef] [Green Version]
- Baye, D.; Heenen, P.-H. Generalised meshes for quantum mechanical problems. J. Phys. A 1986, 19, 2041. [Google Scholar] [CrossRef]
- Vincke, M.; Malegat, L.; Baye, D. Regularization of singularities in Lagrange-mesh calculations. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 811. [Google Scholar] [CrossRef]
- Baye, D. Lagrange-mesh method for quantum-mechanical problems. Phys. Status Solidi B 2006, 243, 1095. [Google Scholar] [CrossRef]
- Baye, D. The Lagrange-mesh method. Phys. Rep. 2015, 565, 1. [Google Scholar] [CrossRef] [Green Version]
- Estévez-Fregoso, M.M.; Lemus, R. Connection between the su(3) algebraic and configuration spaces: Bending modes of linear molecules. Mol. Phys. 2018, 116, 2374. [Google Scholar] [CrossRef]
- Rodríguez-Arcos, M.; Lemus, R. Unitary group approach for effective potentials in 2D systems: Application to carbon suboxide C3O2. Chem. Phys. Lett. 2018, 713, 266. [Google Scholar] [CrossRef] [Green Version]
- Lemus, R. Unitary group approach for effective molecular potentials: 1D systems. Mol. Phys. 2019, 117, 167. [Google Scholar] [CrossRef]
- Lemus, R. A simple approach to solve the time independent Schrödinger equation for 1D systems. J. Phys. Commun. 2019, 3, 025012. [Google Scholar] [CrossRef]
- Rodríguez-Arcos, M.; Lemus, R.; Arias, J.M.; Gómez-Camacho, J. Unitary group approach to describe interatomic potentials in 3D systems. Mol. Phys. 2019, 118, e1662959. [Google Scholar] [CrossRef]
- Moshinsky, M. The Harmonic Oscillator in Modern Physics: From Atoms to Quarks; Gordon and Breach: New York, NY, USA, 1969. [Google Scholar]
- Frank, A.; Van Isacker, P. Algebraic Methods in Molecular and Nuclear Structure Physics; Wiley and Sons: New York, NY, USA, 1994. [Google Scholar]
- Iachello, F.; Levine, R.D. Algebraic Theory of Molecules; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Santiago, R.D.; Arias, J.M.; Gómez-Camacho, J.; Lemus, R. An approach to establish the connection between configuration and su(n + 1) algebraic spaces in molecular physics: Application to ammonia. Mol. Phys. 2017, 115, 3206. [Google Scholar] [CrossRef]
- Santopinto, E.; Bijker, R.; Iachello, F. Transformation brackets between U(ν+ 1)⊃ U(ν)⊃ SO(ν) and U(ν+ 1)⊃ SO(ν+ 1)⊃ SO(ν). J. Math. Phys. 1996, 37, 2674. [Google Scholar] [CrossRef]
- Cejnar, P.; Jolie, J. Quantum phase transitions in the interacting boson model. Prog. Part. Nucl. Phys. 2009, 62, 210. [Google Scholar] [CrossRef] [Green Version]
- Arias, J.M.; Camacho, J.G.; Lemus, R. An su(1,1) dynamical algebra for the Pöschl–Teller potential. J. Phys. A Math. Gen. 2004, 37, 877. [Google Scholar] [CrossRef]
- Lemus, R.; Arias, J.M.; Gómez-Camacho, J. An su(1,1) dynamical algebra for the Morse potential. J. Phys. A Math. Gen. 2004, 37, 1805. [Google Scholar] [CrossRef]
- Álvarez-Bajo, O.; Arias, J.M.; Gómez-Camacho, J.; Lemus, R. An approach to the study of the continuum effects in systems of interacting Morse oscillators. Mol. Phys. 2008, 106, 1275. [Google Scholar] [CrossRef]
- Bermúdez-Montaña, M.; Lemus, R.; Castaños, O. Polyad breaking phenomenon associated with a local-to-normal mode transition and suitability to estimate force constants. Mol. Phys. 2017, 115, 3076. [Google Scholar] [CrossRef]
- Condon, E.; Shortley, G. The Theory of Atomic Spectra; Cambridge University Press: Cambridge, UK, 1951. [Google Scholar]
- Harmin, D. Hydrogenic Stark effect: Properties of the wave functions. Phys. Rev. A 1981, 24, 2491. [Google Scholar] [CrossRef]
- Harmin, D. Theory of the Stark effect. Phys. Rev. A 1982, 26, 2656. [Google Scholar] [CrossRef]
- Rice, M.H.; Good, R.H., Jr. Stark effect in Hydrogen. J. Opt. Soc. Am. 1962, 52, 239. [Google Scholar] [CrossRef]
- Fernández, F.M. Direct calculation of Stark resonances in Hydrogen. Phys. Rev. A 1996, 54, 1206. [Google Scholar] [CrossRef]
- Fernández-Menchero, L.; Summers, H.P. Stark effect in neutral Hydrogen by direct integration of the Hamiltonian in parabolic coordinates. Phys. Rev. A. 2013, 88, 022509. [Google Scholar] [CrossRef]
- Lenz, W. Über den Bewegungsverlauf und die Quantenzustände der gestörten Keplerbewegung. Z. Phys. 1924, 24, 197. [Google Scholar] [CrossRef]
- Pauli, W. On the spectrum of the Hydrogen from the standpoint of the new Quantum Mechanics. Z. Phys. 1926, 36, 336. [Google Scholar] [CrossRef]
- Fock, V. 2. Phys. 98 145 Bargmann V 1936. Z. Phys. 1935, 98, 145. [Google Scholar] [CrossRef]
- Bargman, V. Zur theorie des Wasserstoffatoms. Z. Phys. 1936, 99, 576. [Google Scholar] [CrossRef]
- Schiff, L.I. Quantum Mechanics; McGraw-Hi11: New York, NY, USA, 1968. [Google Scholar]
- Wybourne, B.G. Classical Groups for Physicists; John Wiley: New York, NY, USA, 1974. [Google Scholar]
- Majumbdar, S.D.; Basu, D. O(3,1) symmetry of the Hydrogen atom. J. Phys. A 1974, 7, 787. [Google Scholar] [CrossRef]
- Flamand, G. The Solution of a Stark-Effect Model as a Dynamical Group Calculation. J. Math. Phys. 1966, 7, 1924. [Google Scholar] [CrossRef]
- Bakshi, P.; Kalman, G.; Cohn, A. hydrogenic Stark-Zeeman Spectra for Combined Static and Dynamic Fields. Phys. Rev. Lett. 1973, 31, 1576. [Google Scholar] [CrossRef]
- Gigosos, M.A.; Fraile, J.; Torres, F. Hydrogen Stark profiles: A simulation-oriented mathematical simplification. Phys. Rev. A 1985, 31, 3509. [Google Scholar] [CrossRef]
- Demkov, Y.N.; Monozon, B.S.; Ostrovskii, V.N. Energy levels of a Hydrogen atom in crossed electric and magnetic fields. Sov. Phys. JETP 1970, 30, 775. [Google Scholar]
- Hughes, J.W.B. Stark states and O(4) symmetry of hydrogenic atoms. Proc. Phys. Soc. 1967, 91, 810. [Google Scholar] [CrossRef]
- Barut, A.O.; Kleinert, H. Transition probabilities of the Hydrogen atom from noncompact dynamical groups. Phys. Rev. A 1967, 156, 1541. [Google Scholar] [CrossRef]
- Fronsdal, C. Infinite multiplets and the Hydrogen atom. Phys. Rev. 1967, 156, 1665. [Google Scholar] [CrossRef]
- Kleinert, H. Group Dynamics of Elementary Particles. Fortsch. Phys. 1968, 16, 1. [Google Scholar] [CrossRef]
- Bednar, M. Algebraic treatment of quantum-mechanical models with modified Coulomb potentials. Ann. Phys. 1973, 75, 305. [Google Scholar] [CrossRef]
- Hughes, J.W.B.; Yadagar, J. Theory of laser-induced inelastic collisions. J. Phys. A. 1976, 9, 1569. [Google Scholar] [CrossRef]
- Adams, B.G.; Cizek, J.; Paldus, J. Representation theory of so(4,2) for the perturbation treatment of Hydrogenic-type hamiltonians by algebraic methods. Int. J. Quantum. Chem. 1982, 23, 153. [Google Scholar] [CrossRef]
- Dimitriev, V.F.; Rumer, Y.B. O(2,1) Algebra and the Hydrogen atom. Theor. Math. Phys. 1970, 5, 1146. [Google Scholar] [CrossRef]
- Martínez-Yépez, R.P.; Salas-Brito, A.L. An su(1,1) algebraic method for the Hydrogen atom. J. Phys. A 2005, 38, 8579. [Google Scholar] [CrossRef]
- Tsai, W.-Y. Third-order Stark effect: An operator approach. Phys. Rev. A. 1974, 9, 1081. [Google Scholar] [CrossRef]
- Romero-Lópes, A.; Leal-Ferreira, P. Algebraic treatment of the Stark effect for Hydrogen. Il Nuovo C 1971, 3, 23. [Google Scholar] [CrossRef]
- Greiner, W. Quantum Mechanics: An Introduction; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Davydov, A.S. Quantum Mechanics, 2nd ed.; Pergamon Press: New York, NY, USA, 1965. [Google Scholar]
- Gilmore, R. Catastrophe Theory for Scientists and Engineers; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Castaños, O.; Calixto, M.; Pérez-Bernal, F.; Romera, E. Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space. Phys. Rev. E 2015, 92, 052106. [Google Scholar] [CrossRef] [Green Version]
- Lemus, R. An algebraic approach to calculate Franck–Condon factors. J. Math. Chem. 2020, 58, 29. [Google Scholar] [CrossRef]
Basis Dimension N | |||
---|---|---|---|
2001 | |||
−1. | −0.9969 | ||
−0.25 | −0.2496 | −0.2500 | |
−0.1111 | −0.1111 | −0.1111 | −0.1111 |
−0.0625 | −0.0625 | −0.0625 | −0.0625 |
−0.04 | −0.0400 | −0.0400 | −0.0400 |
−0.0278 | −0.0275 | −0.0276 | −0.0276 |
−0.0204 | −0.0173 | −0.0175 | −0.0180 |
Total Number of Bosons N | |||
---|---|---|---|
4001 | |||
−1. | −1.00330 | ||
−0.25 | −0.25088 | −0.25039 | |
−0.1111 | −0.11237 | −0.11222 | −0.11220 |
−0.0625 | −0.06463 | −0.06457 | −0.06455 |
−0.0400 | −0.04344 | −0.04340 | −0.04336 |
−0.0278 | −0.0330 | −0.0330 | −0.0330 |
−0.0204 | −0.02541 | −0.02555 | −0.02586 |
Error for | Error for | Error for |
---|---|---|
0.0001 | ||
0.00002 | 9 × 10 | |
5 × 10 | 3 × 10 | 8 × 10 |
2 × 10 | 1 × 10 | 1 × 10 |
2 × 10 | 5 × 10 | 3× 10 |
0.00008 | 0.00007 | 0.00005 |
0.0006 | 0.0005 | 0.0005 |
Error for | Error for | Error for |
---|---|---|
0.00007 | ||
0.00002 | 0.00001 | |
0.00003 | 0.00003 | 0.00003 |
0.00005 | 0.00005 | 0.00005 |
0.00009 | 0.00009 | 0.00009 |
0.0001 | 0.0001 | 0.0001 |
0.00008 | 0.00006 | 0.00003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermúdez-Montaña, M.; Rodríguez-Arcos, M.; Lemus, R.; Arias, J.M.; Gómez-Camacho, J.; Orgaz, E. Algebraic DVR Approaches Applied to Describe the Stark Effect. Symmetry 2020, 12, 1719. https://doi.org/10.3390/sym12101719
Bermúdez-Montaña M, Rodríguez-Arcos M, Lemus R, Arias JM, Gómez-Camacho J, Orgaz E. Algebraic DVR Approaches Applied to Describe the Stark Effect. Symmetry. 2020; 12(10):1719. https://doi.org/10.3390/sym12101719
Chicago/Turabian StyleBermúdez-Montaña, Marisol, Marisol Rodríguez-Arcos, Renato Lemus, José M. Arias, Joaquín Gómez-Camacho, and Emilio Orgaz. 2020. "Algebraic DVR Approaches Applied to Describe the Stark Effect" Symmetry 12, no. 10: 1719. https://doi.org/10.3390/sym12101719
APA StyleBermúdez-Montaña, M., Rodríguez-Arcos, M., Lemus, R., Arias, J. M., Gómez-Camacho, J., & Orgaz, E. (2020). Algebraic DVR Approaches Applied to Describe the Stark Effect. Symmetry, 12(10), 1719. https://doi.org/10.3390/sym12101719