The Fourth Axiom of Similarity Measures
Abstract
:1. Introduction
2. Brief Review of Similarity Measures with Intuitionistic Fuzzy Sets
3. Review of the Source Paper
- (A1)
- ;
- (A2)
- If , then ;
- (A3)
- .
4. Our Patchwork for the Fourth Axiom (A4) for the Source Paper
- (A4)
- If , then , and .
5. Numerical Examples
6. Directions for Future Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Info. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Ye, J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model. 2011, 53, 91–97. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, X.; Chen, X. A New Similarity Measure for Intuitionistic Fuzzy Sets and Its Applications. Int. J. Info. Manag. Sci. 2012, 23, 229–239. [Google Scholar]
- Deng, P.S.; Yen, C.; Tung, C.; Yu, Y.; Chu, P. A technical note for the deteriorating inventory model with exponential time-varying demand and partial backlogging. Int. J. Info. Manag. Sci. 2006, 17, 101–108. [Google Scholar]
- Tang, D.W.; Chao, H.C.; Chuang, J.P. A note on the inventory model for deteriorating items with exponential declining demand and partial backlogging. Int. J. Info. Manag. Sci. 2013, 24, 167–173. [Google Scholar]
- Lan, C.; Yu, Y.; Lin, R.H.; Tung, C.; Yen, C.; Deng, P.S. A note on the improved algebraic method for the EPQ model with stochastic lead time. Int. J. Info. Manag. Sci. 2007, 18, 91–96. [Google Scholar]
- Yang, G.K.; Hung, K.C.; Julian, P. AdoptingLanchester model to the Ardennes Campaign with deadlock situation in the shift time between defense and attack. Int. J. Info. Manag. Sci. 2013, 24, 349–362. [Google Scholar]
- Deng, P.S. Improved inventory models with ramp type demand and Weibull deterioration. Int. J. Info. Manag. Sci. 2005, 16, 79–86. [Google Scholar]
- Chang, S.K.J.; Lei, H.L.; Jung, S.T.; Lin, R.H.J.; Lin, J.S.J.; Lan, C.H.; Yu, Y.C.; Chuang, J.P.C. Note on Deriving Weights from Pairwise Comparison Matrices in AHP. Int. J. Info. Manag. Sci. 2008, 19, 507–517. [Google Scholar]
- Jung, S.; Lin, J.S.; Chuang, J.P.C. A note on “an EOQ model for items with Weibull distributed deterioration, shortages and power demand pattern”. Int. J. Inf. Manag. Sci. 2008, 19, 667–672. [Google Scholar]
- Deng, P.S.; Yang, G.K.; Chen, H.; Chu, P.; Huang, D. The criterion for the optimal solution of inventory model with stock-dependent consumption rate. Int. J. Inf. Manag. Sci. 2005, 16, 97–109. [Google Scholar]
- Gerstenkorn, T.; Manko, J. Correlation of intuitionistic fuzzy sets. Fuzzy Sets Syst. 1991, 44, 39–43. [Google Scholar] [CrossRef]
- Li, D.; Cheng, C. New similarity measures of intuitionistic fuzzy sets and application to pattern recognition. Pattern Recognit. Lett. 2002, 23, 221–225. [Google Scholar]
- Hung, K.; Wang, P. An integrated intuitionistic fuzzy similarity measures for medical problems. Int. J. Comput. Intell. Syst. 2014, 7, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Hung, K.; Lin, J.; Chu, P. An extended algorithm of similarity measures and its application to radar target recognition based on intuitionistic fuzzy sets. J. Test. Eval. 2015, 43, 878–887. [Google Scholar] [CrossRef]
- Julian, P.; Hung, K.C.; Lin, S.J. On the Mitchell similarity measure and its application to pattern recognition. Pattern Recognit. Lett. 2012, 33, 1219–1223. [Google Scholar] [CrossRef]
- Chu, C.; Guo, Y. Developing similarity based IPA under intuitionistic fuzzy sets to assess leisure bikeways. Tour. Manag. 2015, 47, 47–57. [Google Scholar] [CrossRef]
- Yen, P.C.P.; Fan, K.; Chao, H.C.J. A new method for similarity measures for pattern recognition. Appl. Math. Model. 2013, 37, 5335–5342. [Google Scholar] [CrossRef]
- Hung, K.; Lin, K. A new intuitionistic fuzzy cosine similarity measures and its application. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong, China, 10–13 December 2012; pp. 2194–2198. [Google Scholar]
- Tung, C.; Liu, S.; Wang, B.S. A comment on “on the Mitchell similarity measure and its application to pattern recognition”. Pattern Recognit. Lett. 2013, 34, 453–455. [Google Scholar] [CrossRef]
- Hung, K.; Lin, K. Long-term business cycle forecasting through a potential intuitionistic fuzzy least-squares support vector regression approach. Inf. Sci. 2013, 224, 37–48. [Google Scholar] [CrossRef]
- Tung, C.; Hopscotch, C. Discussion on similarity measure of its complement. J. Discret. Math. Sci. Cryptogr. 2015, 18, 417–432. [Google Scholar] [CrossRef]
- Aggarwal, A.; Mehra, A.; Chandra, S.; Khan, I. Solving Atanassov’s I-fuzzy linear programming problems using Hurwicz’s criterion. Fuzzy Inform. Eng. 2018, 10, 339–361. [Google Scholar] [CrossRef] [Green Version]
- Farhadinia, B.; Xu, Z. Hesitant fuzzy information measures derived from T-norms and S-norms. Iran. J. Fuzzy Syst. 2018, 15, 157–175. [Google Scholar]
- Fei, L.; Wang, H.; Chen, L.; Deng, Y. A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators. Iran. J. Fuzzy Syst. 2019, 16, 113–126. [Google Scholar]
- Joshi, R.; Kumar, S. A new approach in multiple attribute decision making using exponential hesitant fuzzy entropy. Int. J. Info. Manag. Sci. 2019, 30, 305–322. [Google Scholar]
- Khanmohammadi, E.; Malmir, B.; Safari, H.; Zandieh, M. A new approach to strategic objectives ranking based on fuzzy logarithmic least squares method and fuzzy similarity technique. Oper. Res. Perspect. 2019, 6, 100122. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y. Property analysis of triple implication method for approximate reasoning on Atanassov’s intuitionistic fuzzy sets. Iran. J. Fuzzy Syst. 2018, 15, 95–116. [Google Scholar]
- Lin, K. A new distance measure for MCDM problem using TOPSIS method. In Proceedings of the Proceedings—International Conference on Machine Learning and Data Engineering, iCMLDE 2019, Taipei, Taiwan, 2–4 December 2019; pp. 19–24. [Google Scholar]
- Mishra, A.R.; Rani, P. Interval-valued intuitionistic fuzzy WASPAS method: Application in reservoir flood control management policy. Group Decis. Negot. 2018, 27, 1047–1078. [Google Scholar] [CrossRef]
- Rani, P.; Jain, D.; Hooda, D.S. Shapley function based interval-valued intuitionistic fuzzy VIKOR technique for correlative multi-criteria decision making problems. Iran. J. Fuzzy Syst. 2018, 15, 25–54. [Google Scholar]
- Rouyendegh, B.D. The intuitionistic fuzzy ELECTRE model. Int. J. Manag. Sci. Eng.Manag. 2018, 13, 139–145. [Google Scholar] [CrossRef]
- Shen, F.; Ma, X.; Li, Z.; Xu, Z.; Cai, D. An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Inf. Sci. 2018, 428, 105–119. [Google Scholar] [CrossRef]
- Shokeen, J.; Rana, C. Fuzzy sets, advanced fuzzy sets and hybrids. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS, Chennai, Tamil Nadu, India, 1 August 2017; pp. 2538–2542. [Google Scholar]
- Wang, Y.; Wang, L.; Sangaiah, A.K. Generalized Pythagorean fuzzy information aggregation operators for multi-criteria decision making. In Proceedings of the ICNC-FSKD 2017—13th International Conference on Natural Computation, Fuzzy Systems, and Knowledge Discovery, Guilin, China, 29–31 July 2017; pp. 1410–1415. [Google Scholar]
- Wei, G. Some similarity measures for picture fuzzy sets and their applications. Iran. J. Fuzzy Syst. 2018, 15, 77–89. [Google Scholar]
- Zhang, L.; Liu, J.; Huang, B.; Li, H.; Zhou, X. Dynamic agent evaluation using intuitionistic fuzzy TOPSIS. In Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design, CSCWD 2018, Nanjing, China, 9–11 May 2018; pp. 407–413. [Google Scholar]
- Zhou, W.; Chen, J.; Xu, Z.; Meng, S. Hesitant fuzzy preference envelopment analysis and alternative improvement. Inf. Sci. 2018, 465, 105–117. [Google Scholar] [CrossRef]
- Liang, Z.; Shi, P. Similarity Measures on Intuitionistic Fuzzy Sets. Pattern Recognit. Lett. 2003, 24, 2687–2693. [Google Scholar] [CrossRef]
- Atanassov, K. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 33, 37–46. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic Fuzzy Sets, Theory and Applications; Physica: Heidelberg, NY, USA, 1999. [Google Scholar]
- Li, H.; Wan, S. Improved BP method in vibration failure diagnosis of steam turbine generator set. J. Chongqing Univ. 1999, 22, 47–52. [Google Scholar]
- Chu, C.; Hung, K.; Julian, P. A complete pattern recognition approach under Atanassov’s intuitionistic fuzzy sets. Knowl. Based Syst. 2014, 66, 36–45. [Google Scholar] [CrossRef]
- Yusoff, B.; Taib, I.; Abdullah, L.; Wahab, A.F. A new similarity measure on intuitionistic fuzzy sets. Int. J. Comput. Math. Sci. 2011, 5, 70–74. [Google Scholar]
- Zeng, S. Some intuitionistic fuzzy weighted distance measures and their application to group decision making. Group Decis. Negot. 2013, 22, 281–298. [Google Scholar] [CrossRef]
- Dutta, P. An advanced dice similarity measure of generalized fuzzy numbers and its application in multicriteria decision making. Arab J. Basic Appl. Sci. 2020, 27, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, M.; Ashraf, S.; Abdullah, S.; Mahmood, T.; Muhammad, S. The cosine similarity measures of sphericalfuzzy sets and their applications in decision making. J. Intell. Fuzzy Syst. 2019, 36, 6059–6073. [Google Scholar] [CrossRef]
- Khan, M.J.; Kumam, P.; Deebani, W.; Kumam, W.; Shah, Z. Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects. Mathematics 2020, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Muthuraj, R.; Devi, S. New similarity measure between intuitionistic fuzzy multisets based on tangent function and its application in medical diagnosis. Int. J. Recent Tech. Eng. 2019, 8, 161–165. [Google Scholar]
- Wu, M.; Chen, T.; Fan, J. Similarity measures of T-spherical fuzzy sets based on the cosine function and their applications in pattern recognition. IEEE Access 2020, 8, 98181–98192. [Google Scholar] [CrossRef]
- Kwan, C.; Budavari, B.; Gao, F.; Zhu, X. A hybrid color mapping approach to fusing MODIS and landsat images for forward prediction. Remote Sens. 2018, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Qi, H.; Ayhan, B.; Kwan, C.; Kidd, R. Does multispectral/hyperspectralpansharpening improve the performance of anomaly detection? In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6130–6133. [Google Scholar]
Counterexample | Theoretical Improvement | New Measure | Check Axiom A4 | Iterative Algorithm | Real Application | |
---|---|---|---|---|---|---|
[14] | ||||||
[20] | ||||||
[17] | ||||||
[21] | ||||||
[22] | ||||||
[19] | ||||||
[15] | ||||||
[18] | ||||||
[23] | ||||||
[16] |
Example | Implication | |||
---|---|---|---|---|
1 | 0.848318 | 0.888747 | 0.957349 | |
2 | 0.975641 | 0.973963 | 0.967530 | |
3 | 0.968569 | 0.974424 | 0.969626 |
Frequency Range | ||||||
---|---|---|---|---|---|---|
<0.4f | 0.5f | f | 2f | 3f | >3f | |
Pattern | <0.06,0.84> | <0.84,0.02> | <0.20,0.75> | <0.02,0.89> | <0.20,0.75> | <0.01,0.92> |
Pattern | <0.01,0.93> | <0.02,0.90> | <0.90,0.01> | <0.08,0.85> | <0.01,0.89> | <0.02,0.93> |
Pattern | <0.01,0.94> | <0.01,0.94> | <0.40,0.42> | <0.40,0.44> | <0.28,0.56> | <0.01,0.61> |
Sample | <0.01,0.96> | <0.00,0.97> | <0.37,0.60> | <0.46,0.51> | <0.31,0.66> | <0.21,0.75> |
Sample | <0.00,0.98> | <0.05,0.92> | <0.69,0.27> | <0.04,0.93> | <0.03,0.84> | <0.00,0.97> |
Sample | Sample | |||||
---|---|---|---|---|---|---|
Patterns | Patterns | |||||
[4] | 0.772 | 0.857 | 0.984 | 0.768 | 0.985 | 0.884 |
[44] | 0.779 | 0.827 | 0.918 | 0.797 | 0.939 | 0.822 |
[17] | 0.163 | 0.393 | 0.839 | 0.185 | 0.795 | 0.481 |
[21] | 0.582 | 0.696 | 0.920 | 0.593 | 0.897 | 0.741 |
[43] | 0.554 | 0.704 | 0.926 | 0.582 | 0.893 | 0.721 |
[45] | 0.670 | 0.745 | 0.953 | 0.713 | 0.933 | 0.787 |
[46] | 0.582 | 0.697 | 0.923 | 0.593 | 0.898 | 0.747 |
[47] | 0.773 | 0.927 | 0.980 | 0.604 | 0.629 | 0.606 |
[48] | 0.422 | 0.431 | 0.637 | 0.425 | 0.555 | 0.137 |
[49] | 0.366 | 0.643 | 0.652 | 0.401 | 0.544 | 0.235 |
[50] | 0.805 | 0.853 | 0.904 | 0.788 | 0.835 | 0.713 |
[51] with (61) | 0.797 | 0.715 | 0.908 | 0.633 | 0.834 | 0.423 |
[51] with (62) | 0.924 | 0.920 | 0.975 | 0.790 | 0.902 | 0.773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, C.-H.; Yen, C.-P.; Lin, Y.-F. The Fourth Axiom of Similarity Measures. Symmetry 2020, 12, 1735. https://doi.org/10.3390/sym12101735
Chu C-H, Yen C-P, Lin Y-F. The Fourth Axiom of Similarity Measures. Symmetry. 2020; 12(10):1735. https://doi.org/10.3390/sym12101735
Chicago/Turabian StyleChu, Chun-Hsiao, Chih-Ping Yen, and Yi-Fong Lin. 2020. "The Fourth Axiom of Similarity Measures" Symmetry 12, no. 10: 1735. https://doi.org/10.3390/sym12101735
APA StyleChu, C. -H., Yen, C. -P., & Lin, Y. -F. (2020). The Fourth Axiom of Similarity Measures. Symmetry, 12(10), 1735. https://doi.org/10.3390/sym12101735