Calculation of Polarizabilities for Atoms with Open Shells
Abstract
:1. Introduction
2. Theory
2.1. Polarizabilities
2.2. The RPA Method
2.3. The CIPT Method
3. Results and Discussions
3.1. Ytterbium
3.2. Erbium and Thulium
3.3. Further Developments and Applications
Funding
Conflicts of Interest
References
- Schwerdtfeger, P.; Nagle, K.J. 2018 Table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys. 2019, 117, 1200–1225. [Google Scholar] [CrossRef] [Green Version]
- Mitroy, J.; Safronova, M.S.; Clark, C.W. Theory and applications of atomic and ionic polarizabilities. J. Phys. B 2010, 43, 202001. [Google Scholar] [CrossRef]
- Safronova, M.S. The search for variation of fundamental constants with clocks, topical review. Ann. Phys. 2019, 531, 1800364. [Google Scholar] [CrossRef] [Green Version]
- Dzuba, V.A.; Berengut, J.C.; Harabati, C.; Flambaum, V.V. Combining configuration interaction with perturbation theory for atoms with a large number of valence electrons. Phys. Rev. A 2017, 95, 012503. [Google Scholar] [CrossRef] [Green Version]
- Ludlow, A.D.; Boyd, M.M.; Peik, J.; Ye, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637. [Google Scholar] [CrossRef]
- Hinkley, N.; Sherman, J.A.; Phillips, N.B.; Schioppo, M.; Lemke, N.D.; Beloy, K.; Pizzocaro, M.; Oates, C.W.; Ludlow, A.D. An Atomic Clock with 10(-18) Instability. Science 2013, 341, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beloy, K.; Hinkley, N.; Phillips, N.B.; Sherman, J.A.; Schioppo, M.; Lehman, J.; Feldman, A.; Hanssen, L.M.; Oates, C.W.; Ludlow, A.D. Atomic Clock with 1 × 10−18 Room-Temperature Blackbody Stark Uncertainty. Phys. Rev. Lett. 2014, 113, 260801. [Google Scholar] [CrossRef] [PubMed]
- Nemitz, N.; Ohkubo, T.; Takamoto, M.; Ushijima, I.; Das, M.; Ohmae, N.; Katori, H. Frequency ratio of Yb and Sr clocks with uncertainty 5 × 10−17 at 150 seconds averaging time. Nat. Photonics 2016, 10, 258. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Kozlov, A.; Flambaum, V.V. Scalar Static Polarizabilities of lanthanides and actinides. Phys. Rev. A 2014, 89, 042507. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, A.; Dzuba, V.A.; Flambaum, V.V. Optical atomic clocks with suppressed black body radiation shift. Phys. Rev. A 2014, 90, 042505. [Google Scholar] [CrossRef] [Green Version]
- Golovizin, A.; Fedorova, E.; Tregubov, D.; Sukachev, D.; Khabarova, K.; Sorokin, V.; Kolachevsky, N. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Nat. Commun. 2019, 10, 1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzuba, V.A.; Flambaum, V.V.; Schiller, S. Testing physics beyond the standard model through additional clock transitions in neutral ytterbium. Phys. Rev. A 2018, 98, 022501. [Google Scholar] [CrossRef] [Green Version]
- Dzuba, V.A.; Allehabi, S.O.; Flambaum, V.V.; Li, J.; Schiller, S. Time keeping and searching for new physics using metastable states of Cu, Ag and Au. arXiv 2020, arXiv:2006.14735. [Google Scholar]
- Dzuba, V.A.; Flambaum, V.V.; Safronova, M.S.; Porsev, S.G.; Pruttivarasin, T.; Hohensee, M.A.; Häffner, H. Strongly enhanced effects of Lorentz symmetry violation inentangled Yb+ ions. Nat. Phys. 2016, 12, 465. [Google Scholar] [CrossRef]
- Sanner, C.; Huntemann, N.; Lange, R.; Tamm, C.; Peik, E.; Safronova, M.S.; Porsev, S.G. Optical clock comparison for Lorentz symmetry testing. Nature 2019, 567, 204. [Google Scholar] [CrossRef] [Green Version]
- Allehabi, S.O.; Li, J.; Dzuba, V.A.; Flambaum, V.V. Theoretical study of electronic structure of erbium and fermium. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107137. [Google Scholar] [CrossRef]
- Li, J.; Dzuba, V.A. Theoretical study of the spectroscopic properties of mendelevium (Z = 101). J. Quant. Spectrosc. Radiat. Transf. 2020, 247, 106943. [Google Scholar] [CrossRef] [Green Version]
- Dalgarno, A.; Lewis, J.T. The exact calculation of long-range forces between atoms by perturbation theory. Proc. R. Soc. Lond. A 1955, 223, 70. [Google Scholar]
- Dzuba, V.A.; Flambaum, V.V.; Silvestrov, P.G.; Sushkov, O.P. Correlation potential method for the calculation of energy levels, hyperfine structure and E1 transition amplitudes in atoms with one unpaired electron. J. Phys. B 1987, 20, 1399. [Google Scholar] [CrossRef]
- Johnson, W.R.; Sapirstein, J. Computation of Second-Order Many-Body Corrections in Relativistic Atomic Systems. Phys. Rev. Lett. 1986, 57, 1126. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Derevianko, A. Dynamic polarizabilities and related properties of clock states of the ytterbium atom. J. Phys. B 2010, 43, 074011. [Google Scholar] [CrossRef] [Green Version]
- Beloy, K. Experimental constraints on the polarizabilities of the 6s2 1S0 and 6s6p 3P0o states of Yb. Phys. Rev. A 2012, 86, 022521. [Google Scholar] [CrossRef] [Green Version]
S | P | Source |
---|---|---|
143 | 340 | this work |
141(6) | 302(14) | Ref. [21] |
139(6) | Ref. [1], Recommended value | |
From 134.4(1.0) to 144.2(1.0) | From 280.1(1.0) to 289.9(1.0) | Ref. [22], Experimental values |
Er | Tm | ||||
---|---|---|---|---|---|
NIST | CIPT | NIST | CIPT | ||
6 | 0 | 0 | 7/2 | 0 | |
4 | 6958 | 6370 | 5/2 | 8771 | 8350 |
3 | 22,269 | 23,280 | 3/2 | 19,132 | 19,574 |
4 | 18,816 | 18,595 | 5/2 | 17,752 | 18,336 |
5 | 17,347 | 16,581 | 7/2 | 16,742 | 15,799 |
6 | 17,073 | 15,500 | 9/2 | 17,613 | 18,195 |
7 | 17,157 | 16,315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzuba, V. Calculation of Polarizabilities for Atoms with Open Shells. Symmetry 2020, 12, 1950. https://doi.org/10.3390/sym12121950
Dzuba V. Calculation of Polarizabilities for Atoms with Open Shells. Symmetry. 2020; 12(12):1950. https://doi.org/10.3390/sym12121950
Chicago/Turabian StyleDzuba, Vladimir. 2020. "Calculation of Polarizabilities for Atoms with Open Shells" Symmetry 12, no. 12: 1950. https://doi.org/10.3390/sym12121950
APA StyleDzuba, V. (2020). Calculation of Polarizabilities for Atoms with Open Shells. Symmetry, 12(12), 1950. https://doi.org/10.3390/sym12121950