Fine-Grained Mechanical Chinese Named Entity Recognition Based on ALBERT-AttBiLSTM-CRF and Transfer Learning
Abstract
:1. Introduction
2. Literature Review
2.1. Word Representation Technologies
2.2. Named Entity Recognition for Domain Fields
2.3. Text Data Augmented in NER
3. Chinese Fine-Grained Named Entity Recognition Method
3.1. Lite Deep Multinetwork Collaboration (ALBERT-AttBiLSTM-CRF)
3.1.1. Language Representation Based on a Lite BERT
3.1.2. Feature Extraction Based on AttBiLSTM
3.1.3. Sequence Tag Generation Based on CRF
3.1.4. ALBERT-AttBiLSTM-CRF Method
3.2. Model Transfer Considering Activate Learning (MTAL)
3.2.1. Transfer Learning
3.2.2. Active Learning
3.2.3. Model Transfer Method Considering Activate Learning
Algorithm 1 Model Transfer Considering Activate Learning (L, U, M, Conf) |
Input: L: Labeled training dataset; U: Unlabeled training dataset; M: Proposed model; Conf: Confidence level. Output: Trained model M’; 1: //Model transfer 2: Use the training set L to train to get the model M; 3: Use model M to predict the unlabelled data set U, 4: Calculate the score of the conditional probability of the model CRF layer (Y|X) as the confidence level Conf; 5: //Active learning 6: for each Conf of samples do 7: Select all ConfConfhigh samples Uhigh, add them to L (L = L + Uhigh), and delete Uhigh from U (U = U − Uhigh) 8: Select all Conf < Conflow samples Ulow, re-annotate them manually, add them to L (L = L + Ulow), and delete Ulow from U (U = U − Ulow) 9: Follow the above steps to iterate n times until the model M’ converges. 10: end for 11: return Trained model M’. |
3.3. ALBERT-AttBiLSTM-CRF Model Transfer Considering Activate Learning Method
4. Experimental Verification Analysis
4.1. Evaluation Metrics
4.2. Dataset Acquisition and Annotation
4.2.1. CLUENER2020 Dataset
4.2.2. Manufacturing-NER Dataset
4.3. Baseline Algorithms
4.4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Chhim, P.; Chinnam, R.B.; Sadawi, N. Product design and manufacturing process based ontology for manufacturing knowledge reuse. J. Intell. Manuf. 2019, 30, 905–916. [Google Scholar] [CrossRef]
- He, D.; Cao, H.; Wang, S.; Chen, X. Time-reassigned synchrosqueezing transform: The algorithm and its applications in mechanical signal processing. Mech. Syst. Signal Process. 2019, 117, 255–279. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Q.; Yuan, Q.; Huang, H.; Li, Y. Research on a Real-Time Monitoring Method for the Wear State of a Tool Based on a Convolutional Bidirectional LSTM Model. Symmetry 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, S.; Wang, Z.; Yang, G. Real-time tiny part defect detection system in manufacturing using deep learning. IEEE Access 2019, 7, 89278–89291. [Google Scholar] [CrossRef]
- Tabernik, D.; Šela, S.; Skvarč, J.; Skočaj, D. Segmentation-based deep-learning approach for surface-defect detection. J. Intell. Manuf. 2020, 31, 759–776. [Google Scholar] [CrossRef] [Green Version]
- Galati, F.; Bigliardi, B. Industry 4.0: Emerging themes and future research avenues using a text mining approach. Comput. Ind. 2019, 109, 100–113. [Google Scholar] [CrossRef]
- Kwon, S.; Ko, Y.; Seo, J. Effective vector representation for the Korean named-entity recognition. Pattern Recognit. Lett. 2019, 117, 52–57. [Google Scholar] [CrossRef]
- Moreno, I.; Boldrini, E.; Moreda, P.; Romá-Ferri, M.T. Drugsemantics: A corpus for named entity recognition in spanish summaries of product characteristics. J. Biomed. Inform. 2017, 72, 8–22. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Al-Zboon, S.; Jararweh, Y.; Juola, P. Transfer Learning for Arabic Named Entity Recognition with Deep Neural Networks. IEEE Access 2020, 8, 37736–37745. [Google Scholar] [CrossRef]
- Lal, A. SANE 2.0: System for fine grained named entity typing on textual data. Eng. Appl. Artif. Intell. 2019, 84, 11–17. [Google Scholar] [CrossRef]
- Liu, X.; Lv, J.; Xie, Q.; Huang, H.; Wang, W. Construction and application of an ergonomic simulation optimization method driven by a posture load regulatory network. SIMULATION TTrans. Soc. Modeling Simul. Int. 2020, 96. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, W.; Zheng, W.; Nie, W.; Li, Z. Manufacturing process similarity measurement model and application based on process constituent elements. Int. J. Prod. Res. 2020, 1–23. [Google Scholar] [CrossRef]
- Rida, I.; Al-Maadeed, N.; Al-Maadeed, S.; Bakshi, S. A comprehensive overview of feature representation for biometric recognition. Multimed. Tools Appl. 2020, 79, 4867–4890. [Google Scholar] [CrossRef]
- Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res. 2003, 3, 1137–1155. [Google Scholar]
- Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2020; pp. 3111–3119. Available online: https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html (accessed on 20 July 2020).
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2020; pp. 3104–3112. Available online: https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html (accessed on 10 July 2020).
- Yao, L.; Huang, H.; Chen, S.-H. Product Quality Detection through Manufacturing Process Based on Sequential Patterns Considering Deep Semantic Learning and Process Rules. Processes 2020, 8, 751. [Google Scholar] [CrossRef]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 19 November 2018).
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Sun, Y.; Wang, S.; Li, Y.-K.; Feng, S.; Tian, H.; Wu, H.; Wang, H. ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020; pp. 8968–8975. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. In Proceedings of the Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2020; pp. 5753–5763. Available online: https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html (accessed on 15 June 2020).
- Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language representations. arXiv 2019, arXiv:1909.11942. [Google Scholar]
- Zhou, C.; Li, B.; Sun, X. Improving software bug-specific named entity recognition with deep neural network. J. Syst. Softw. 2020, 165, 110572. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L.; Tao, L.; Li, W. BiLSTM-CRF for geological named entity recognition from the geoscience literature. Earth Sci. Inform. 2019, 12, 565–579. [Google Scholar] [CrossRef]
- Georgescu, T.-M.; Iancu, B.; Zurini, M. Named-Entity-Recognition-Based Automated System for Diagnosing Cybersecurity Situations in IoT Networks. Sensors 2019, 19, 3380. [Google Scholar] [CrossRef] [Green Version]
- Vardhan, H.; Surana, N.; Tripathy, B. Named-Entity Recognition for Legal Documents. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Jaipur, India, 13–15 February 2020; pp. 469–479. [Google Scholar]
- Yin, M.; Mou, C.; Xiong, K.; Ren, J. Chinese clinical named entity recognition with radical-level feature and self-attention mechanism. J. Biomed. Inform. 2019, 98, 103289. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Sun, X. A unified model for cross-domain and semi-supervised named entity recognition in chinese social media. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Yin, X.; Zhao, H.; Zhao, J.; Yao, W.; Huang, Z. Multi-neural network collaboration for Chinese military named entity recognition. J. Tsinghua Univ. (Sci. Technol.) 2020, 60, 648–655. [Google Scholar]
- Jin, B.; Cruz, L.; Gonçalves, N. Deep Facial Diagnosis: Deep Transfer Learning from Face Recognition to Facial Diagnosis. IEEE Access 2020. [Google Scholar] [CrossRef]
- Shen, Y.; Yun, H.; Lipton, Z.C.; Kronrod, Y.; Anandkumar, A. Deep active learning for named entity recognition. arXiv 2017, arXiv:1707.05928. [Google Scholar]
- Gligic, L.; Kormilitzin, A.; Goldberg, P.; Nevado-Holgado, A. Named entity recognition in electronic health records using transfer learning bootstrapped neural networks. Neural Netw. 2020, 121, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.C.; Nguyen, N.T.; Fujita, H.; Hoang, D.T.; Hwang, D. A combination of active learning and self-learning for named entity recognition on Twitter using conditional random fields. Knowl. Based Syst. 2017, 132, 179–187. [Google Scholar] [CrossRef]
- Kung, H.-K.; Hsieh, C.-M.; Ho, C.-Y.; Tsai, Y.-C.; Chan, H.-Y.; Tsai, M.-H. Data-Augmented Hybrid Named Entity Recognition for Disaster Management by Transfer Learning. Appl. Sci. 2020, 10, 4234. [Google Scholar] [CrossRef]
- Zhang, M.; Geng, G.; Chen, J. Semi-Supervised Bidirectional Long Short-Term Memory and Conditional Random Fields Model for Named-Entity Recognition Using Embeddings from Language Models Representations. Entropy 2020, 22, 252. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tu, Z.; Wang, Z.; Xu, X. Ltp: A new active learning strategy for bert-crf based named entity recognition. arXiv 2020, arXiv:2001.02524. [Google Scholar]
- Gers, F.A.; Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Trans. Neural Netw. 2001, 12, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Rida, I.; Herault, R.; Marcialis, G.L.; Gasso, G. Palmprint recognition with an efficient data driven ensemble classifier. Pattern Recognit. Lett. 2019, 126, 21–30. [Google Scholar] [CrossRef]
- Xu, L.; Dong, Q.; Yu, C.; Tian, Y.; Liu, W.; Li, L.; Zhang, X. CLUENER2020: Fine-grained Name Entity Recognition for Chinese. arXiv 2020, arXiv:2001.04351. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Xu, K.; Yang, Z.; Kang, P.; Wang, Q.; Liu, W. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition. Comput. Biol. Med. 2019, 108, 122–132. [Google Scholar] [CrossRef]
- Liu, J.; Xia, C.; Yan, H.; Xu, W. Innovative Deep Neural Network Modeling for Fine-grained Chinese Entity Recognition. Electronics 2020, 9, 1001. [Google Scholar] [CrossRef]
- Bo, W.; Wei, W.; Yang, W.; Xuefeng, W.; Caiwei, L. Event Recognition in Chinese Emergencies Corpus Using ALBERT-BiLSTM-CRF. In Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020; pp. 392–397. [Google Scholar]
- Wei, J.; Huang, H.; Yao, L.; Hu, Y.; Fan, Q.; Huang, D. NI-MWMOTE: An Improving Noise-immunity Majority Weighted Minority Oversampling Technique for Imbalanced Classification Problems. Expert Syst. Appl. 2020, 158, 113504. [Google Scholar] [CrossRef]
Model | Parameters | Layers | Hidden | Embedding | Parameter-Sharing |
---|---|---|---|---|---|
BERT-base | 108M | 12 | 768 | 768 | False |
BERT-large | 334M | 24 | 1024 | 1024 | False |
ALBERT-base | 12M | 12 | 768 | 128 | Ture |
ALBERT-large | 18M | 24 | 1024 | 128 | Ture |
ALBERT-xlarge | 60M | 24 | 2048 | 128 | Ture |
ALBERT-xxlarge | 235M | 12 | 4096 | 128 | Ture |
Dataset | Train | Dev | Test | Examples | Classes | Entities |
---|---|---|---|---|---|---|
CLUENER2020 | 10,748 | 1343 | 1345 | Sentence: 在美国加利福尼亚西海岸的一次秘密军事测试中, 激光武器首次被用在海军战斗行动中. (In a secret military test on the west coast of California, the laser weapon was used in naval combat operations for the first time.) Label: Address: 美国加利福尼亚西海岸(West Coast of California) Government: 海军(Navy) | 10 | Address, Organization, Game, Book, Company, Movie, Position, Name, Government, Scene |
Manufacturing -NER | 7959 | 995 | 995 | Sentence: 空心杯电动机采用的是无铁芯转子, 在结构上突破了传统电机的结构形式. (The coreless motor uses a coreless rotor, which breaks through the structure of the traditional motor in structure.) Label: Model: 空心杯电动机, 传统电机(Coreless motor, Traditional motor) Structure: 无铁芯转子(Ironless rotor) | 7 | Model, Part, Parameter, Shape, Function, Material, Structure |
Method | Precision | Recall | F1-Score |
---|---|---|---|
BiLSTM-CRF [42] | 0.7106 | 0.6897 | 0.7000 |
ALBERT-BiLSTM-CRF [44] | 0.8876 | 0.8270 | 0.8555 |
ALBERT-CRF [43] | 0.8094 | 0.6120 | 0.6936 |
ALBERT-BiLSTM [43] | 0.7736 | 0.8132 | 0.7925 |
En2BiLSTM-CRF [43] | 0.9156 | 0.8337 | 0.8720 |
ALBERT [23] | 0.7992 | 0.6459 | 0.7107 |
BERT [20] | 0.7724 | 0.8046 | 0.7882 |
RoBERTa [41] | 0.7926 | 0.8169 | 0.8042 |
Human Performance [40] | 0.6574 | 0.6217 | 0.6341 |
ALBERT-AttBiLSTM-CRF (our) | 0.9253 | 0.8702 | 0.8962 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Huang, H.; Wang, K.-W.; Chen, S.-H.; Xiong, Q. Fine-Grained Mechanical Chinese Named Entity Recognition Based on ALBERT-AttBiLSTM-CRF and Transfer Learning. Symmetry 2020, 12, 1986. https://doi.org/10.3390/sym12121986
Yao L, Huang H, Wang K-W, Chen S-H, Xiong Q. Fine-Grained Mechanical Chinese Named Entity Recognition Based on ALBERT-AttBiLSTM-CRF and Transfer Learning. Symmetry. 2020; 12(12):1986. https://doi.org/10.3390/sym12121986
Chicago/Turabian StyleYao, Liguo, Haisong Huang, Kuan-Wei Wang, Shih-Huan Chen, and Qiaoqiao Xiong. 2020. "Fine-Grained Mechanical Chinese Named Entity Recognition Based on ALBERT-AttBiLSTM-CRF and Transfer Learning" Symmetry 12, no. 12: 1986. https://doi.org/10.3390/sym12121986
APA StyleYao, L., Huang, H., Wang, K. -W., Chen, S. -H., & Xiong, Q. (2020). Fine-Grained Mechanical Chinese Named Entity Recognition Based on ALBERT-AttBiLSTM-CRF and Transfer Learning. Symmetry, 12(12), 1986. https://doi.org/10.3390/sym12121986