Enhancement of Light Output in ScxY1−xPO4:Eu3+ Solid Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moses, W.W.; Weber, M.J.; Derenzo, S.E.; Perry, D.; Berdahl, P.; Boatner, L.A. Prospects for dense, infrared emitting scintillators. IEEE Trans. Nucl. Sci. 1988, 45, 462–466. [Google Scholar] [CrossRef]
- Nakazawa, E. The lowest 4f-to-5d and charge-transfer transitions of rare earth ions in YPO4 hosts. J. Lumin. 2002, 100, 89–96. [Google Scholar] [CrossRef]
- Jüstel, T.; Huppertz, P.; Mayr, W.; Wiechert, D.U. Temperature-dependent spectra of YPO4:Me (Me = Ce, Pr, Nd, Bi). J. Lumin. 2004, 106, 225–233. [Google Scholar] [CrossRef]
- Boatner, L.A. Synthesis, structure, and properties of monazite, pretulite, and xenotime. Rev. Mineral. Geochem. 2002, 48, 87–121. [Google Scholar] [CrossRef]
- Makhov, V.N.; Kirikova, N.Y.; Kirm, M.; Krupa, J.C.; Liblik, P.; Lushchik, A.; Lushchik, C.; Negodin, E.; Zimmerer, G. Luminescence properties of YPO4:Nd3+: A promising VUV scintillator material. Nucl. Instrum. Meth. A 2002, 486, 437–442. [Google Scholar] [CrossRef]
- Boatner, L.A.; Beall, G.W.; Abraham, M.M.; Finch, C.B.; Huray, P.G.; Rappaz, M. Monazite and other lanthanide orthophosphates as alternate actinide waste forms. In Book Scientific Basis for Nuclear Waste Management; Northrup, C.J., Ed.; Plenum Publishing Corporation: New York, NY, USA, 1980; Volume 2, pp. 289–296. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.; Liu, F.; Chen, H.; Wang, H.; Zhao, E.; Jiang, Y.; Chan, T.; Wang, C.; Zhang, W.; et al. Charge deformation and orbital hybridization: Intrinsic mechanisms on tunable chromaticity of Y3Al5O12:Ce3+ luminescence by doping Gd3+ for warm white LEDs. Sci. Rep. 2015, 5, 11514. [Google Scholar] [CrossRef] [Green Version]
- Kamada, K.; Endo, T.; Tsutumi, K.; Yanagida, T.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A.; Pejchal, J.; Nikl, M. Composition engineering in cerium-doped (Lu,Gd)3(Ga, Al)5O12 single-crystal scintillators. Cryst. Growth Des. 2011, 11, 4484–4490. [Google Scholar] [CrossRef]
- Levushkina, V.; Spassky, D.; Brik, M.G.; Zych, E.; Madej, A.; Belsky, A.N.; Bartosiewicz, A.K.; Nikl, M. Mixed vanadates: Optimization of optical properties by varying chemical composition. J. Lumin. 2017, 189, 140–147. [Google Scholar] [CrossRef]
- Levushkina, V.S.; Spassky, D.A.; Aleksanyan, E.M.; Brik, M.G.; Tretyakova, M.S.; Zadneprovski, B.I.; Belsky, A.N. Bandgap engineering of the LuxY1−xPO4 mixed crystals. J. Lumin. 2016, 171, 33–39. [Google Scholar] [CrossRef]
- Lyu, T.; Dorenbos, P. Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4. J. Mater. Chem. C 2018, 6, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Levushkina, V.S.; Spassky, D.A.; Tretyakova, M.S.; Zadneprovski, B.I.; Kamenskikh, I.A.; Vasil’ev, A.N.; Belsky, A. Luminescence properties of solid solutions LuxY1-xPO4:Eu3+. Opt. Mater. 2018, 75, 607–611. [Google Scholar] [CrossRef]
- Gektin, A.V.; Belsky, A.N.; Vasil’ev, A.N. Scintillation efficiency improvement by mixed crystal use. IEEE Trans. Nucl. Sci. 2013, 61, 262–270. [Google Scholar] [CrossRef]
- Sidletskiy, O.; Gektin, A.; Belsky, A. Light yield improvement trends in mixed scintillation crystals. Phys. Status Solidi A 2014, 211, 2384–2387. [Google Scholar] [CrossRef]
- Belsky, A.N.; Auffray, E.; Lecoq, P.; Dujardin, C.; Garnier, N.; Canibano, H.; Pedrini, C.; Petrosyan, A.G. Progress in the development of LuAlO3-based scintillators. IEEE Trans. Nucl. Sci. 2001, 48, 1095–1100. [Google Scholar] [CrossRef]
- Spassky, D.; Vasil’ev, A.; Vielhauer, S.; Sidletskiy, O.; Voloshyna, O.; Belsky, A. Composition effect in luminescence properties of Y(NbxTa1-x)O4 mixed crystals. Opt. Mater. 2018, 80, 247–252. [Google Scholar] [CrossRef]
- Hernández, A.G.; Boyer, D.; Potdevin, A.; Chadeyron, G.; Murillo, A.G.; Romo, F.D.J.C.; Mahiou, R. Tuning the morphology of GdxY1-xPO4:Tb3+ powders and their emission intensity upon VUV excitation. Opt. Mater. 2017, 73, 350–357. [Google Scholar] [CrossRef]
- Sun, C.; Xue, D. The synergy effect of rare earth cations on local structure and PL emission in a Ce3+:REPO4 (RE = La, Gd, Lu, Y) system. Dalton Trans. 2017, 46, 7888–7896. [Google Scholar] [CrossRef]
- Makowski, M.; Witkowski, M.E.; Drozdowski, W.; Wojtowicz, A.J.; Wisniewski, K.; Boatner, L.A. Luminescence and scintillation properties of XPO4:Nd3+ (X = Y, Lu, Sc, La) crystals. Opt. Mater. 2018, 79, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Mi, R.; Chen, J.; Liu, Y.G.; Fang, M.; Mei, L.; Huang, Z.; Wang, B.; Zhaob, C. Luminescence and energy transfer of a color tunable phosphor: Tb3+ and Eu3+ co-doped ScPO4. RSC Adv. 2016, 6, 28887–28894. [Google Scholar] [CrossRef]
- Jedoń, J.; Zeler, J.; Zych, E. On the orange-red persistent luminescence of ScPO4:Eu3+. J. Alloy. Compd. 2020, 816, 152–603. [Google Scholar] [CrossRef]
- Melnikov, P.; Massabni, A.M.; Malta, O. Luminescent properties of some rare earth phosphates. Phosphorus Sulfur 1996, 111, 1. [Google Scholar] [CrossRef]
- Dorenbos, P. The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE = La, Gd, Y, Lu, Sc) compounds. J. Phys. Condens. Mat. 2013, 25, 225–501. [Google Scholar] [CrossRef]
- Pankratov, V.; Pärna, R.; Kirm, M.; Nagirnyi, V.; Nõmmiste, E.; Omelkov, S.; Vielhauer, S.; Chernenko, K.; Reisberg, L.; Turunen, P.; et al. Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory. Radiat. Meas. 2019, 121, 91–98. [Google Scholar] [CrossRef]
- Pärna, R.; Sankari, R.; Kukk, E.; Nõmmiste, E.; Valden, M.; Lastusaari, M.; Kooser, K.; Kokko, K.; Hirsimäki, M.; Urpelainen, S.; et al. FinEstBeaMS—A wide-range Finnish-Estonian Beamline for Materials Science at the 1.5 GeV storage ring at the MAX IV Laboratory. Nucl. Instrum. Meth. A 2017, 859, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Trukhin, A.N.; Shmits, K.; Jansons, J.L.; Boatner, L.A. Ultraviolet luminescence of ScPO4, AlPO4 and GaPO4 crystals. J. Phys. Condens. Mat. 2013, 25, 385–502. [Google Scholar] [CrossRef]
- Han, L.; Guo, C.; Ci, Z.; Wang, C.; Wang, Y.; Huang, Y. Morphology-controllable synthesis, electronic structure and multicolor-tunable luminescence properties of multifunctional ScPO4 based nano/micro-phosphor. Chem. Eng. J. 2017, 312, 204–219. [Google Scholar] [CrossRef]
- Xu, H.; Xu, B.; Liu, R.; Li, X.; Zhang, S.; Ouyang, C.; Zhong, S. Facile microwave synthesis of ScPO4·2H2O flowerlike superstructures: Morphology control, electronic structure and multicolor tunable luminescent properties. CrystEngComm 2017, 19, 5787–5796. [Google Scholar] [CrossRef]
- Brecher, C.; Samelson, H.; Riley, R.; Lempicki, A. Polarized spectra and crystal field parameters of Eu3+ in YPO4. J. Chem. Phys. 1968, 49, 3303. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Belsky, A.; Gektin, A.; Vasil’ev, A.N. Influence of Disorder in Scintillating Solid Solutions on Thermalization and Recombination of Electronic Excitations. Phys. Status Solidi B 2019. [Google Scholar] [CrossRef]
- Belsky, A.; Gektin, A.; Gridin, S.; Vasil’ev, A.N. Electronic and optical properties of scintillators based on mixed ionic crystals. In Engineering of Scintillation Materials and Radiation Technologies: Proceedings of ISMART 2016; Korzhik, M., Gektin, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 200, pp. 63–82. [Google Scholar] [CrossRef]
- Belsky, A.N.; Chevallier, P.; Dhez, P.; Martin, P.; Pedrini, C.; Vasil’ev, A.N. X-ray excitation of luminescence of scintillator materials in the 7–22 keV region. Nucl. Instrum. Meth. A 1995, 361, 384–387. [Google Scholar] [CrossRef]
- Tomiki, T.; Shikenbaru, T.; Ganaha, Y.; Futemma, T.; Kato, H.; Yuri, M.; Fukutani, H.; Miyahara, T.; Shin, S.; Ishigame, M.; et al. Optical spectra of Y2O3 single crystals in the vacuum ultraviolet region. II. J. Phys. Soc. Jpn. 1992, 61, 2951–2963. [Google Scholar] [CrossRef]
- Tomiki, T.; Fukudome, F.; Kaminao, M.; Fujisawa, M.; Tanahara, Y.; Futemma, T. Optical spectra of Y3Al5O12 (YAG) single crystals in the vacuum ultraviolet region. J. Phys. Soc. Jpn. 1989, 58, 1801–1810. [Google Scholar] [CrossRef]
- Tomiki, T.; Ganaha, Y.; Shikenbaru, T.; Futemma, T.; Yuri, M.; Aiura, Y.; Fukutani, H.; Kato, H.; Miyahara, T.; Yonesu, A.; et al. Anisotropic optical spectra of YAlO3 (YAP) single crystals in the vacuum ultraviolet region. II. Spectra of Reflectivity. J. Phys. Soc. Jpn. 1994, 63, 1976–1985. [Google Scholar] [CrossRef]
- Cardona, M.; Ley, L. Photoemission in solids. Vol. 1: General principles; Vol. 2: Case studies. In Topics in Applied Physics; Cardona, M., Ley, L., Eds.; Springer Proceedings in Physics: Berlin/Heidelberg, Germany, 1978; p. 290. [Google Scholar]
- Feldbach, E.; Kamada, M.; Kirm, M.; Lushchik, A.; Lushchik, C.; Martinson, I. Direct excitation of Tl+ impurity ions by hot photoelectrons in wide-gap crystals. Phys. Rev. B 1997, 56, 13908. [Google Scholar] [CrossRef]
- Belsky, A.N.; Krupa, J.C. Luminescence excitation mechanisms of rare earth doped phosphors in the VUV range. Displays 1999, 19, 185–196. [Google Scholar] [CrossRef]
- Lushchik, A.; Lushchik, C.; Popov, A.I.; Schwartz, K.; Shablonin, E.; Vasil’chenko, E. Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nucl. Instrum. Meth. B 2016, 374, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Belskiy, A.N.; Kamenskikh, I.A.; Mikhailin, V.V.; Shpinkov, I.N.; Vasil’ev, A.N. Electronic excitations in crystals with complex oxyanions. Phys. Scr. 1990, 41, 530–536. [Google Scholar] [CrossRef]
- Vasil’ev, A.N.; Gektin, A.V. Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 2013, 61, 235–245. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spassky, D.; Voznyak-Levushkina, V.; Arapova, A.; Zadneprovski, B.; Chernenko, K.; Nagirnyi, V. Enhancement of Light Output in ScxY1−xPO4:Eu3+ Solid Solutions. Symmetry 2020, 12, 946. https://doi.org/10.3390/sym12060946
Spassky D, Voznyak-Levushkina V, Arapova A, Zadneprovski B, Chernenko K, Nagirnyi V. Enhancement of Light Output in ScxY1−xPO4:Eu3+ Solid Solutions. Symmetry. 2020; 12(6):946. https://doi.org/10.3390/sym12060946
Chicago/Turabian StyleSpassky, Dmitry, Viktoriia Voznyak-Levushkina, Anastasiia Arapova, Boris Zadneprovski, Kirill Chernenko, and Vitali Nagirnyi. 2020. "Enhancement of Light Output in ScxY1−xPO4:Eu3+ Solid Solutions" Symmetry 12, no. 6: 946. https://doi.org/10.3390/sym12060946
APA StyleSpassky, D., Voznyak-Levushkina, V., Arapova, A., Zadneprovski, B., Chernenko, K., & Nagirnyi, V. (2020). Enhancement of Light Output in ScxY1−xPO4:Eu3+ Solid Solutions. Symmetry, 12(6), 946. https://doi.org/10.3390/sym12060946