Long-Range Quantum Gravity
Abstract
:1. Introduction
2. Long-Range Properties of Quantum Gravity
2.1. Criticality, the Holographic Bound and the Classical Limit
2.2. Generalized Thermal Equivalence Principle (GTEP)
3. A Black Hole Toy Model
3.1. Black Hole as a Critical Star
3.2. Black Hole as a Critical Quantum System
3.3. Black Holes as States of Maximal Information
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence. Astrophys. J. 2017, 851, L35. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses. arXiv 2020, arXiv:2004.08342. [Google Scholar]
- Event Horizon Telescope Collaboration; Azulay, R.; Baczko, A.K.; Britzen, S.; Desvignes, G.; Eatough, R.P.; Karuppusamy, R.; Kim, J.Y.; Kramer, M.; Krichbaum, T.P.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 2019, 875, L1. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Usp. Fiz. Nauk 1991, 161, 64–66. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, T. Thermodynamical Aspects of Gravity: New insights. Rept. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Entanglement Equilibrium and the Einstein Equation. Phys. Rev. Lett. 2016, 116, 201101. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. The Atoms Of Space, Gravity and the Cosmological Constant. Int. J. Mod. Phys. 2016, D25, 1630020. [Google Scholar] [CrossRef]
- Hawking, S. The Information Paradox for Black Holes. arXiv 2015, arXiv:1509.01147. [Google Scholar]
- Mathur, S.D. The Information paradox: A Pedagogical introduction. Class. Quant. Grav. 2009, 26, 224001. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, V.; Gualtieri, L. Testing the black hole no-hair” hypothesis. Class. Quant. Grav. 2016, 33, 174001. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C. Black Hole’s Quantum N-Portrait. Fortsch. Phys. 2013, 61, 742–767. [Google Scholar] [CrossRef] [Green Version]
- Mueck, W. On the number of soft quanta in classical field configurations. Can. J. Phys. 2014, 92, 973–975. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C. Quantum Compositeness of Gravity: Black Holes, AdS and Inflation. J. Cosmol. Astropart. Phys. 2014, 1401, 023. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Bhaduri, R.K. Dark matter and dark energy from a Bose–Einstein condensate. Class. Quant. Grav. 2015, 32, 105003. [Google Scholar] [CrossRef]
- Oriti, D. The universe as a quantum gravity condensate. Comptes Rendus Phys. 2017, 18, 235–245. [Google Scholar] [CrossRef]
- Casadio, R.; Giugno, A.; Giusti, A. Matter and gravitons in the gravitational collapse. Phys. Lett. 2016, B763, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Linnemann, N.S.; Visser, M.R. Hints towards the emergent nature of gravity. Stud. Hist. Philos. Mod. Phys. 2018, B64, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Bhaduri, R.K. Bose–Einstein condensate in cosmology. arXiv 2018, arXiv:1808.10505. [Google Scholar]
- Das, S.; Bhaduri, R.K. On the quantum origin of a small positive cosmological constant. arXiv 2018, arXiv:1812.07647. [Google Scholar]
- Tuveri, M.; Cadoni, M. Galactic dynamics and long-range quantum gravity. Phys. Rev. D 2019, 100, 024029. [Google Scholar]
- De, S.; Singh, T.P.; Varma, A. Quantum gravity as an emergent phenomenon. Int. J. Mod. Phys. 2019, 28, 1944003. [Google Scholar] [CrossRef] [Green Version]
- Compère, G. Are quantum corrections on horizon scale physically motivated? Int. J. Mod. Phys. D 2019, 28, 1930019. [Google Scholar] [CrossRef]
- Cadoni, M.; Casadio, R.; Giusti, A.; Mueck, W.; Tuveri, M. Effective Fluid Description of the Dark Universe. Phys. Lett. 2018, B776, 242–248. [Google Scholar] [CrossRef]
- Casadio, R.; Giugno, A.; Giusti, A.; Lenzi, M. Quantum corpuscular corrections to the Newtonian potential. Phys. Rev. D 2017, 96, 044010. [Google Scholar] [CrossRef] [Green Version]
- Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M. Emergence of a Dark Force in Corpuscular Gravity. Phys. Rev. 2018, D97, 044047. [Google Scholar] [CrossRef] [Green Version]
- Giusti, A. On the corpuscular theory of gravity. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1930001. [Google Scholar] [CrossRef] [Green Version]
- Cadoni, M.; Sanna, A.P.; Tuveri, M. Anisotropic Fluid Cosmology: An Alternative to Dark Matter? arXiv 2020, arXiv:2002.06988. [Google Scholar] [CrossRef]
- Witten, E. Quantum gravity in de Sitter space. In Proceedings of the Strings 2001: International Conference, Mumbai, India, 5–10 January 2001. [Google Scholar]
- Binetruy, P. Vacuum energy, holography and a quantum portrait of the visible Universe. arXiv 2012, arXiv:1208.4645. [Google Scholar]
- Verlinde, E.P. Emergent Gravity and the Dark Universe. SciPost Phys. 2017, 2, 016. [Google Scholar] [CrossRef]
- Casadio, R.; Lenzi, M.; Ciarfella, A. Quantum black holes in bootstrapped Newtonian gravity. Phys. Rev. D 2020, 101, 124032. [Google Scholar] [CrossRef]
- Casadio, R.; Scardigli, F. Generalized Uncertainty Principle, Classical Mechanics, and General Relativity. Phys. Lett. B 2020, 807, 135558. [Google Scholar] [CrossRef]
- Bruschi, D.E.; Wilhelm, F.K. Self gravity affects quantum states. arXiv 2020, arXiv:2006.11768. [Google Scholar]
- Dvali, G.; Gomez, C. Self-Completeness of Einstein Gravity. arXiv 2010, arXiv:1005.3497. [Google Scholar]
- Dvali, G.; Giudice, G.F.; Gomez, C.; Kehagias, A. UV-Completion by Classicalization. J. High Energy Phys. 2011, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C.; Kehagias, A. Classicalization of Gravitons and Goldstones. J. High Energy Phys. 2011, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- ’t Hooft, G.T. Dimensional reduction in quantum gravity. Conf. Proc. C 1993, 930308, 284–296. [Google Scholar]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 1999, 38, 1113–1133. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Susskind, L.; Witten, E. The Holographic bound in anti-de Sitter space. arXiv 1998, arXiv:hep-th/9805114. [Google Scholar]
- Aharony, O.; Gubser, S.S.; Maldacena, J.M.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rept. 2000, 323, 183–386. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.A.; Thorlacius, L. AdS/CFT and the information paradox. Phys. Rev. D 1999, 60, 104012. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 2006, 96, 181602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Kim, J.; Kim, S.; Nahmgoong, J. Large AdS black holes from QFT. arXiv 2018, arXiv:1810.12067. [Google Scholar]
- Benini, F.; Hristov, K.; Zaffaroni, A. Black hole microstates in AdS4 from supersymmetric localization. J. High Energy Phys. 2016, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Benini, F.; Milan, P. Black holes in 4d N = 4 Super-Yang-Mills. ZPhys. Rev. X 2020, 10, 021037. [Google Scholar]
- Cabo-Bizet, A.; Cassani, D.; Martelli, D.; Murthy, S. Microscopic origin of the Bekenstein–Hawking entropy of supersymmetric AdS5 black holes. J. High Energy Phys. 2019, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C. Black Holes as Critical Point of Quantum Phase Transition. Eur. Phys. J. 2014, C74, 2752. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C. Black Hole’s 1/N Hair. Phys. Lett. 2013, B719, 419–423. [Google Scholar] [CrossRef]
- Cadoni, M. Conformal symmetry of gravity and the cosmological constant problem. Phys. Lett. 2006, B642, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Smolin, L. MOND as a regime of quantum gravity. Phys. Rev. D 2017, 96, 083523. [Google Scholar] [CrossRef] [Green Version]
- Narnhofer, H.; Peter, I.; Thirring, W.E. How hot is the de Sitter space? Int. J. Mod. Phys. 1996, B10, 1507–1520. [Google Scholar] [CrossRef] [Green Version]
- Deser, S.; Levin, O. Accelerated detectors and temperature in (anti)-de Sitter spaces. Class. Quant. Grav. 1997, 14, L163–L168. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Comment on ‘Accelerated detectors and temperature in anti-de Sitter spaces’. Class. Quant. Grav. 1998, 15, 251–253. [Google Scholar] [CrossRef] [Green Version]
- Casadio, R.; Giusti, A. The role of collapsed matter in the decay of black holes. Phys. Lett. B 2019, 797, 134915. [Google Scholar] [CrossRef]
- Calmet, X.; Casadio, R.; Kuipers, F. Quantum Gravitational Corrections to a Star Metric and the Black Hole Limit. Phys. Rev. D 2019, 100, 086010. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadoni, M.; Tuveri, M.; Sanna, A.P. Long-Range Quantum Gravity. Symmetry 2020, 12, 1396. https://doi.org/10.3390/sym12091396
Cadoni M, Tuveri M, Sanna AP. Long-Range Quantum Gravity. Symmetry. 2020; 12(9):1396. https://doi.org/10.3390/sym12091396
Chicago/Turabian StyleCadoni, Mariano, Matteo Tuveri, and Andrea P. Sanna. 2020. "Long-Range Quantum Gravity" Symmetry 12, no. 9: 1396. https://doi.org/10.3390/sym12091396
APA StyleCadoni, M., Tuveri, M., & Sanna, A. P. (2020). Long-Range Quantum Gravity. Symmetry, 12(9), 1396. https://doi.org/10.3390/sym12091396