New Identities Dealing with Gauss Sums
Abstract
:1. Introduction
2. Several Lemmas
3. Proof of the Theorems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, W.P.; Hu, J.Y. The number of solutions of the diagonal cubic congruence equation mod p. Math. Rep. 2018, 20, 70–76. [Google Scholar]
- Granville, A.; Soundararajan, K. Large character sums: Pretentious characters and the Pólya-Vinogradov theorem. J. Am. Math. Soc. 2007, 20, 357–384. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhang, W.P. On the fourth-order linear recurrence formula related to classical Gauss sums. Open Math. 2017, 15, 1251–1255. [Google Scholar]
- Chen, L. On classical Gauss sums and their properties. Symmetry 2018, 10, 625. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Chen, Z.Y. Some new hybrid power mean formulae of trigonometric sums. Adv. Differ. Equ. 2020, 2020, 220. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.Y. A linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums. Acta Math. Sin. (Chin. Ser.) 2018, 61, 67–72. [Google Scholar]
- Chowla, S.; Cowles, J.; Cowles, M. On the number of zeros of diagonal cubic forms. J. Number Theory 1977, 9, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Berndt, B.C.; Evans, R.J. The determination of Gauss sums. Bull. Am. Math. Soc. 1981, 5, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.P.; Yi, Y. On Dirichlet characters of polynomials. Bull. Lond. Math. Soc. 2002, 34, 469–473. [Google Scholar]
- Zhang, W.P.; Yao, W.L. A note on the Dirichlet characters of polynomials. Acta Arith. 2004, 115, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Bourgain, J.; Garaev, Z.M.; Konyagin, V.S. On the hidden shifted power problem. SIAM J. Comput. 2012, 41, 1524–1557. [Google Scholar] [CrossRef]
- Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. USA 1948, 34, 204–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weil, A. Basic Number Theory; Springer: New York, NY, USA, 1974. [Google Scholar]
- Burgess, D.A. On Dirichlet characters of polynomials. Proc. Lond. Math. Soc. 1963, 13, 537–548. [Google Scholar] [CrossRef]
- Shen, S.M.; Zhang, W.P. On the quartic Gauss sums and their recurrence property. Adv. Differ. Equ. 2017, 2017, 43. [Google Scholar] [CrossRef]
- Han, D. A Hybrid mean value involving two-term exponential sums and polynomial character sums. Czechoslov. Math. J. 2014, 64, 53–62. [Google Scholar]
- Liu, X.Y.; Zhang, W.P. On the high-power mean of the generalized Gauss sums and Kloosterman sums. Mathematics 2019, 7, 907. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.P.; Li, H.L. Elementary Number Theory; Shaanxi Normal University Press: Xi’an, China, 2008. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Samad, A.; Chen, Z. New Identities Dealing with Gauss Sums. Symmetry 2020, 12, 1416. https://doi.org/10.3390/sym12091416
Zhang W, Samad A, Chen Z. New Identities Dealing with Gauss Sums. Symmetry. 2020; 12(9):1416. https://doi.org/10.3390/sym12091416
Chicago/Turabian StyleZhang, Wenpeng, Abdul Samad, and Zhuoyu Chen. 2020. "New Identities Dealing with Gauss Sums" Symmetry 12, no. 9: 1416. https://doi.org/10.3390/sym12091416