On the Recurrence Properties of Narayana’s Cows Sequence
Abstract
:1. Introduction
2. Preliminary
3. Proof of Theorems
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A
n | n | n | ||||||
---|---|---|---|---|---|---|---|---|
1 | 0 | 1 | 21 | −26 | 1278 | 41 | −1407 | 2,670,964 |
2 | 1 | 1 | 22 | 28 | 1873 | 42 | 472 | 3,914,488 |
3 | 0 | 1 | 23 | 19 | 2745 | 43 | 1740 | 5,736,961 |
4 | −1 | 2 | 24 | −54 | 4023 | 44 | −1879 | 8,407,925 |
5 | 1 | 3 | 25 | 9 | 5896 | 45 | −1268 | 12,322,413 |
6 | 1 | 4 | 26 | 73 | 8641 | 46 | 3619 | 18,059,374 |
7 | −2 | 6 | 27 | −63 | 12,664 | 47 | −611 | 26,467,299 |
8 | 0 | 9 | 28 | −64 | 18,560 | 48 | −4887 | 38,789,712 |
9 | 3 | 13 | 29 | 136 | 27,201 | 49 | 4230 | 56,849,086 |
10 | −2 | 19 | 30 | 1 | 39,865 | 50 | 4276 | 83,316,385 |
11 | −3 | 28 | 31 | −200 | 58,425 | 51 | −9117 | 122,106,097 |
12 | 5 | 41 | 32 | 135 | 85,626 | 52 | −46 | 178,955,183 |
13 | 1 | 60 | 33 | 201 | 125,491 | 53 | 13,393 | 262,271,568 |
14 | −8 | 88 | 34 | −335 | 183,916 | 54 | −9071 | 384,377,665 |
15 | 4 | 129 | 35 | −66 | 269,542 | 55 | −13,439 | 563,332,848 |
16 | 9 | 189 | 36 | 536 | 395,033 | 56 | 22,464 | 825,604,416 |
17 | −12 | 277 | 37 | −269 | 578,949 | 57 | 4368 | 1,209,982,081 |
18 | −5 | 406 | 38 | −602 | 848,491 | 58 | −35,903 | 1,773,314,929 |
19 | 21 | 595 | 39 | 805 | 1,243,524 | 59 | 18,096 | 2,598,919,345 |
20 | −7 | 872 | 40 | 333 | 1,822,473 | 60 | 40,271 | 3,808,901,426 |
h | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | |||||||||||||
1 | 1 | 1 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 19 | 28 | ||
2 | 1 | 2 | 3 | 6 | 11 | 18 | 30 | 50 | 81 | 130 | 208 | ||
3 | 1 | 3 | 6 | 13 | 27 | 51 | 94 | 171 | 303 | 527 | 906 | ||
4 | 1 | 4 | 10 | 24 | 55 | 116 | 234 | 460 | 879 | 1640 | 3006 | ||
5 | 1 | 5 | 15 | 40 | 100 | 231 | 505 | 1065 | 2175 | 4320 | 8391 | ||
6 | 1 | 6 | 21 | 62 | 168 | 420 | 987 | 2220 | 4815 | 10,122 | 20,733 | ||
7 | 1 | 7 | 28 | 91 | 266 | 714 | 1792 | 4278 | 9807 | 21,721 | 46,732 |
References
- Allouche, J.P.; Johnson, T. Narayana’s cows and delayed morphisms. J. d’Inform. Music. 1996, hal-02986050. Available online: https://hal.archives-ouvertes.fr/hal-02986050 (accessed on 28 December 2020).
- Narayana_Pandita. Wikipedia. Available online: https://en.wikipedia.org/wiki/Narayana_Pandita_(mathematician) (accessed on 28 December 2020).
- Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org (accessed on 16 January 2021).
- Kak, S. The Piggy Bank Cryptographic Trope. Infocommun. J. 2014, 6, 22–25. [Google Scholar]
- Kak, S.C.; Chatterjee, A. On Decimal Sequences. IEEE Trans. Inf. Theory 1981, 27, 647–652. [Google Scholar] [CrossRef]
- Bilgici, G. THE GENERALIZED ORDER-k NARAYANA’S COWS NUMBERS. Math. Slovaca 2016, 66, 795–802. [Google Scholar] [CrossRef]
- Goy, T. On identities with multinomial coefficients for Fibonacci-Narayana sequence. Ann. Math. Inform. 2018, 49, 75–84. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Sirvent, V.F. A note on the k-Narayana sequence. Ann. Math. Inform. 2015, 45, 91–105. [Google Scholar]
- Falcon, S. On the k-Lucas Numbers of Arithmetic Indexes. Appl. Math. 2012, 3, 1202–1206. [Google Scholar] [CrossRef] [Green Version]
- Falcon, S. On the comples k-Fibonacci numbers. Falcon Cogent Math. 2016, 3, 1–9. [Google Scholar]
- Halici, S.; Akyuz, Z. Fibonacci and Lucas Sequences at Negative Indices. Konuralp J. Math. 2016, 4, 172–178. [Google Scholar]
- Boussayoud, A.; Boughaba, S.; Kerada, M. Generating Functions K-Fibonacci and K-Jacobsthal Numbers at Negative Indices. Electron. J. Math. Anal. Appl. 2018, 6, 195–202. [Google Scholar]
- Boussayoud, A.; Kerada, M.; Harrouche, N. On the k-Lucas Numbers and Lucas Polynomials. Turk. J. Anal. Number Theory 2017, 5, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Soykan, Y. Summing Formulas For Generalized Tribonacci Numbers. arXiv 2019, arXiv:1910.03490. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kim, T.; Dolgy, D.V.; Kim, D.S.; Seo, J.J. Convolved Fibonacci Numbers and Their Applications. Ars Comb. 2017, 135, 119–131. [Google Scholar]
- Chen, Z.; Qi, L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence. Symmetry 2019, 11, 788. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Chen, L. Tribonacci Numbers and Some Related Interesting Identities. Symmetry 2019, 11, 1195. [Google Scholar] [CrossRef] [Green Version]
- Kilic, E. Tribonacci sequences with certain indices and their sums. Ars Comb. 2008, 86, 13–22. [Google Scholar]
- Agoh, T.; Dilcher, K. Higher-order convolutions for Bernoulli and Euler polynomials. J. Math. Anal. Appl. 2014, 419, 1235–1247. [Google Scholar] [CrossRef]
- He, Y.; Kim, T. A higher-order convolution for Bernoulli polynomials of the second kind. Appl. Math. Comput. 2018, 324, 51–58. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, W. Some Identities Involving Fibonacci Polynomials and Fibonacci Numbers. Mathematics 2018, 6, 334. [Google Scholar] [CrossRef] [Green Version]
- Falcon, S.; Plaza, A. On k-Fibonacci numbers of arithmetic indexes. Appl. Math. Comput. 2009, 208, 180–185. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Representing Sums of Finite Products of Chebyshev Polynomials of the First Kind and Lucas Polynomials by Chebyshev Polynomials. Mathematics 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X. On the Recurrence Properties of Narayana’s Cows Sequence. Symmetry 2021, 13, 149. https://doi.org/10.3390/sym13010149
Lin X. On the Recurrence Properties of Narayana’s Cows Sequence. Symmetry. 2021; 13(1):149. https://doi.org/10.3390/sym13010149
Chicago/Turabian StyleLin, Xin. 2021. "On the Recurrence Properties of Narayana’s Cows Sequence" Symmetry 13, no. 1: 149. https://doi.org/10.3390/sym13010149
APA StyleLin, X. (2021). On the Recurrence Properties of Narayana’s Cows Sequence. Symmetry, 13(1), 149. https://doi.org/10.3390/sym13010149