Solvability Conditions and General Solution of a System of Matrix Equations Involving η-Skew-Hermitian Quaternion Matrices
Abstract
:1. Introduction
2. Preliminaries
- (1)
- .
- (2)
- .
- (3)
- .
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (1)
- =
- (2)
- (3)
- (1)
- The linear system in (3) possesses a triplet solution of the form , and the matrices Z and Y are η-skew-Hermitian.
- (2)
- (3)
3. Main Results
- (1)
- The linear system (5) has a solution of the form with and .
- (2)
- (3)
- (4)
- (1)
- The systemhas a solution of the form , where and .
- (2)
- (3)
- (4)
- (1)
- The systemhas a solution of the form , where and .
- (2)
- (3)
- (4)
- (1)
- The equationhas a solution of the form with and .
- (2)
- (3)
- (4)
- (1)
- The systemhas a triplet solution with and .
- (2)
- (3)
- (4)
4. Algorithm with a Numerical Example
Algorithm 1: General solution algorithm |
---|
|
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caradus, S.R. Generalized Inverses and Operator Theory, Queen’s Paper in Pure and Applied Mathematics; Queen’s University: Kingston, ON, Canada, 1978. [Google Scholar]
- Israel, A.B.; Greville, T.N.E. Generalized Inverses: Theory and Applications; Wiley-Interscience: New York, NY, USA, 1974. [Google Scholar]
- Hamilton, W.R. On quaternions, or on a new system of imaginaries in algebra. Philos. Mag. 1844, 25, 489–495. [Google Scholar]
- Conway, J.H.; Smith, D.A. On Quaternions and Octonions: Their Geometry, Arithmetic and Symmetry; A K Peters: Natick, MA, USA, 2002. [Google Scholar]
- Kamberov, G.; Norman, P.; Pedit, F.; Pinkall, U. Quaternions, Spinors and Surfaces. In Contemporary Mathematics; American Mathematical Society: Province, RI, USA, 2002; Volume 299. [Google Scholar]
- Nebe, G. Finite quaternionic matrix groups. Represent Theory 1998, 2, 106–223. [Google Scholar] [CrossRef]
- Ward, J.P. Quaternions and Cayley Numbers, Mathematics and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; Volume 403. [Google Scholar]
- Shoemake, K. Animating rotation with quaternion curves. Comput. Graph. 1985, 19, 245–254. [Google Scholar] [CrossRef]
- Adler, S.L. Quaternionic Quantum Mechanics and Quantum Fields; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Dam, E.B.; Koch, M.; Lillholm, M. Quaternions, Interpolation and Animation; Technical Report DIKU-TR-98/5; Department of Computer Science, University of Copenhagen: København, Denmark, 1998. [Google Scholar]
- Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality; Princeton University Press: Princeton, RI, USA, 2002. [Google Scholar]
- Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl. 1997, 251, 21–57. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, P.; Rodman, L. Algebraic Ricatti Equations; Oxford Press: Oxford, UK, 1995. [Google Scholar]
- Gajic, Z.; Qureshi, M.T.J. Lyapunov Matrix Equation in System Stability and Control; Courier Dover Publications: Mineola, NY, USA, 2008. [Google Scholar]
- He, Z.H.; Wang, Q.W.; Zhang, Y. A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica 2018, 87, 25–31. [Google Scholar] [CrossRef]
- Wang, Q.W.; He, Z.H. Solvability conditions and general solution for mixed Sylvester equations. Automatica 2013, 49, 2713–2719. [Google Scholar] [CrossRef]
- Wang, Q.W.; He, Z.H. Systems of coupled generalized Sylvester matrix equations. Automatica 2014, 50, 2840–2844. [Google Scholar] [CrossRef]
- Wang, Q.W.; He, Z.H.; Zhang, Y. Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica 2019, 101, 207–213. [Google Scholar] [CrossRef]
- Dehghan, M.; Hajarian, M. Finite iterative algorithms for the reflexive and antireflexive solutions of the matrix equation A1XB1 + A2XB2 = C. Math. Comput. Model. 2009, 49, 1937–1959. [Google Scholar] [CrossRef]
- Duan, X.F.; Liao, A.P. On the existence of Hermitian positive definite solutions of the matrix equation Xs + A*X-tA = Q. Linear Algebra Appl. 2008, 429, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Farid, F.O.; He, Z.H.; Wang, Q.W. The consistency and the exact solutions to a system of matrix equations. Linear Multilinear Algebra 2016, 64, 2133–2158. [Google Scholar] [CrossRef]
- Farid, F.O.; Nie, X.R.; Wang, Q.W. On the solutions of two systems of quaternion matrix equations. Linear Multilinear Algebra 2018, 66, 2355–2388. [Google Scholar] [CrossRef]
- Huang, L.P.; Zeng, Q. The solvability of matrix equation AXB + CYD = E over a simple Artinian ring. Linear Multilinear Algebra 1995, 38, 225–232. [Google Scholar]
- Liu, X.; Wang, Q.W.; Zhang, Y. Consistency of quaternion matrix equations AX *- XB = C and X - AX * B = C*. Electron. J. Linear Algebra 2019, 35, 394–407. [Google Scholar] [CrossRef]
- Miron, S.; Bihan, N.L.; Mars, J. Quaternion-music for vector-sensor array processing. IEEE Trans. Signal Process. 2009, 54, 1218–1229. [Google Scholar] [CrossRef]
- Nie, X.R.; Wang, Q.W.; Zhang, Y. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq. 2017, 24, 233–253. [Google Scholar] [CrossRef]
- Vander Woude, J.W. Almost noninteracting control by measurement feedback. Syst. Control Lett. 1987, 9, 7–16. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.W.; He, Z.H. The Common Solution of Some Matrix Equations. Algebra Colloq. 2016, 23, 71–81. [Google Scholar] [CrossRef]
- Wang, Q.W. The decomposition of pairwise matrices equations over an arbitrary skew field. Acta Math. Sin. 1996, 39, 396–403. [Google Scholar]
- Wang, Q.W.; He, Z.H. Some matrix equations with applications. Linear Multilinear Algebra 2012, 60, 1327–1353. [Google Scholar] [CrossRef]
- Dehghan, M.; Shirilord, A. Solving complex Sylvester matrix equation by accelerated double-step scale splitting (ADSS) method. Eng. Comput. 2021, 37, 489–508. [Google Scholar] [CrossRef]
- Khan, I.A.; Wang, Q.W.; Song, G.J. Minimal ranks of some quaternion matrix expressions with applications. Appl. Math. Comput. 2010, 217, 2031–2040. [Google Scholar] [CrossRef]
- Rehman, A.; Kyrchei, I.; Ali, I.; Akram, M.; Shakoor, A. Explicit formulas and determinantal representations for eta-skew-Hermitian solution to a system of quaternion matrix equations. Filomat 2020, 34, 2601–2627. [Google Scholar] [CrossRef]
- Rehman, A.; Kyrchei, I.; Ali, I.; Shakoor, A.; Akram, M. Constraint solution of a classical system of quaternion matrix equations and its Cramer’s rule. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1015–1024. [Google Scholar] [CrossRef]
- Rehman, A.; Wang, Q.W. A system of matrix equations with five variables. Appl. Math. Comput. 2015, 271, 805–819. [Google Scholar] [CrossRef]
- Rehman, A.; Wang, Q.W.; Ali, I.; Akram, M.; Ahmad, M.O. A constraint system of generalized Sylvester quaternion matrix equations. Adv. Appl. Clifford Algebras 2017, 27, 3183–3196. [Google Scholar] [CrossRef]
- Rehman, A.; Wang, Q.W.; He, Z.H. Solution to a system of real quaternion matrix equations encompassing η-Hermicity. Appl. Math. Comput. 2015, 265, 945–957. [Google Scholar] [CrossRef]
- Wang, Q.W.; Rehman, A.; He, Z.H.; Zhang, Y. Constraint generalized Sylvester matrix equations. Automatica 2016, 69, 60–64. [Google Scholar] [CrossRef]
- Khatri, C.G.; Mitra, S.K. Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math. 1976, 31, 579–585. [Google Scholar] [CrossRef]
- Groß, J. A note on the general Hermitian solution to AXA* = B. Bull. Malays. Math. Sci. Soc. 1998, 21, 57–62. [Google Scholar]
- Yuan, S.F.; Wang, Q.W.; Yu, Y.B.; Tian, Y. On Hermitian solutions of the split quaternion matrix equation AXB + CXD = E. Adv. Appl. Clifford Algebr. 2017, 27, 3235–3252. [Google Scholar] [CrossRef]
- Horn, R.A.; Zhang, F. A generalization of the complex Autonne-Takagi factorization to quaternion matrices. Linear Multilinear Algebra 2012, 60, 1239–1244. [Google Scholar] [CrossRef]
- Took, C.C.; Mandic, D.P.; Zhang, F.Z. On the unitary diagonalization of a special class of quaternion matrices. Appl. Math. Lett. 2011, 24, 1806–1809. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.F.; Wang, Q.W. Two special kinds of least squares solutions for the quaternion matrix equation AXB + CXD = E. Electron. J. Linear Algebra 2012, 23, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Took, C.C.; Mandic, D.P. Augmented second-order statistics of quaternion random signals. Sign. Process. 2011, 91, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Took, C.C.; Mandic, D.P. The quaternion LMS algorithm for adaptive filtering of hypercomplex real world processes. IEEE Trans. Signal Process. 2009, 57, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. The η-anti-Hermitian solution to some classic matrix equations. Appl. Math. Comput. 2018, 320, 264–270. [Google Scholar] [CrossRef]
- Rehman, A.; Kyrchei, I.; Ali, I.; Akram, M.; Shakoor, A. The General Solution of Quaternion Matrix Equation Having η-Skew-Hermicity and Its Cramer’s Rule. Math. Probl. Eng. 2019, 2019, 7939238. [Google Scholar] [CrossRef] [Green Version]
- Beik, F.P.A.; Ahmadi-Asl, S. An iterative algorithm for η-(anti)-Hermitian least-squares solutions of quaternion matrix equations. Electron. J. Linear Algebra 2015, 30, 372–401. [Google Scholar] [CrossRef]
- Marsaglia, G.; Styan, G.P.H. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974, 2, 269–292. [Google Scholar] [CrossRef]
- Buxton, J.N.; Churchouse, R.F.; Tayler, A.B. Matrices Methods and Applications; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- He, Z.H.; Wang, Q.W. A real quaternion matrix equation with applications. Linear Multilinear Algebra 2013, 61, 725–740. [Google Scholar] [CrossRef]
- Wang, Q.W.; Li, C.K. Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl. 2009, 430, 1626–1640. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi-Asl, S.; Beik, F.P.A. An efficient iterative algorithm for quaternionic least-squares problems over the generalized η-(anti-)bi-Hermitian matrices. Linear Multilinear Algebra 2017, 65, 1743–1769. [Google Scholar] [CrossRef]
- Ahmadi-Asl, S.; Beik, F.P.A. Iterative algorithms for least-squares solutions of a quaternion matrix equation. J. Appl. Math. Comput. 2017, 53, 95–127. [Google Scholar] [CrossRef]
- Shojaei-Fard, A.; Amroudi, A.N. An efficient method for solving a quaternionic least squares problem. Int. J. Appl. Comput. Math. 2018, 4, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; Khan, I.A.; Anjum, R.; Hussain, I. Solvability Conditions and General Solution of a System of Matrix Equations Involving η-Skew-Hermitian Quaternion Matrices. Symmetry 2021, 13, 1825. https://doi.org/10.3390/sym13101825
Rehman A, Khan IA, Anjum R, Hussain I. Solvability Conditions and General Solution of a System of Matrix Equations Involving η-Skew-Hermitian Quaternion Matrices. Symmetry. 2021; 13(10):1825. https://doi.org/10.3390/sym13101825
Chicago/Turabian StyleRehman, Abdur, Israr Ali Khan, Rukhshanda Anjum, and Iftikhar Hussain. 2021. "Solvability Conditions and General Solution of a System of Matrix Equations Involving η-Skew-Hermitian Quaternion Matrices" Symmetry 13, no. 10: 1825. https://doi.org/10.3390/sym13101825
APA StyleRehman, A., Khan, I. A., Anjum, R., & Hussain, I. (2021). Solvability Conditions and General Solution of a System of Matrix Equations Involving η-Skew-Hermitian Quaternion Matrices. Symmetry, 13(10), 1825. https://doi.org/10.3390/sym13101825