On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain
Abstract
:1. Introduction
2. Main Results
3. Partial Sums
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-functions and certain difference operator. Trans. Roy. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Maths. 1910, 41, 193–203. [Google Scholar]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Aral, A.; Gupta, V. On the Durrmeyer type modification of the q-Baskakov type operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1171–1180. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators. Math. Slovaca 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disk. J. Inequal. Appl. 2006, 17231. [Google Scholar] [CrossRef] [Green Version]
- Aral, A. On the generalized Picard and Gauss weierstrass singular integrals. J. Comput. Anal. Appl. 2006, 8, 249–261. [Google Scholar]
- Mohammad, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesnik 2013, 65, 454–465. [Google Scholar]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. Int. Schol. Res. Not. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. On harmonic meromorphic functions associated with basic hypergeometric functions. Sci. World J. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Khan, M.G.; Frasin, B.A.; Aouf, M.K.; Abdeljawad, T.; Mashwani, W.K.; Arif, M. On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Math. 2021, 6, 3037–3052. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some General Classes of q-Starlike Functions Associated with the Janowski Functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz, A.M.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Matematiche 2013, 68, 107–122. [Google Scholar]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A Subclass of q-Starlike Functions Defined by Using a Symmetric q-Derivative Operator and Related with Generalized Symmetric Conic Domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some Coefficient Inequalities of q-Starlike Functions Associated with Conic Domain Defined by q-Derivative. J. Funct. Spaces 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Maths. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Zahoor, Q. Coefficients inequalities for q-starlike functions associated with Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Aktaş, İ.; Baricz, Á.; Orhan, H. Bounds for radii of starlikeness and convexity of some special functions. Turkish J. Maths. 2018, 42, 211–226. [Google Scholar] [CrossRef]
- Aktaş, I.; Baricz, Á.; Yağmur, N. Bounds for the radii of univalence of some special functions. Math. Inequal. Appl. 2017, 20, 825–843. [Google Scholar]
- Baricz, Á.; Dimitrov, D.; Orhan, H.; Yağmur, N. Radii of starlikeness of some special functions. Proc. Am. Math. Soc. 2016, 144, 3355–3367. [Google Scholar] [CrossRef] [Green Version]
- Baricz, Á.; Kupan, P.A.; Szasz, R. The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 2014, 142, 2019–2025. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. Some Subordination Results on q-Analogue of Ruscheweyh Differential Operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, NJ, USA, 1983; Volumes I and II. [Google Scholar]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S. Coefficient estimates in subclasses of the Caratheodory class related to conical domains. Acta Math. Univ. Comen. 2005, 74, 149–161. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Silvia, E.M. Partial sums of convex functions of order α. Houston J. Math. 1985, 11, 397–404. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. https://doi.org/10.3390/sym13101947
Zainab S, Raza M, Xin Q, Jabeen M, Malik SN, Riaz S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry. 2021; 13(10):1947. https://doi.org/10.3390/sym13101947
Chicago/Turabian StyleZainab, Saira, Mohsan Raza, Qin Xin, Mehwish Jabeen, Sarfraz Nawaz Malik, and Sadia Riaz. 2021. "On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain" Symmetry 13, no. 10: 1947. https://doi.org/10.3390/sym13101947
APA StyleZainab, S., Raza, M., Xin, Q., Jabeen, M., Malik, S. N., & Riaz, S. (2021). On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry, 13(10), 1947. https://doi.org/10.3390/sym13101947