An Improved Controlled Random Search Method
Abstract
:1. Introduction
2. Method Description
- The creation of a test point (New_Point step) is performed using a new procedure described in Section 2.1.
- In the Min_Max step, the stochastic termination rule described in Section 2.2 is used. The aim of this rule is to terminate the method when, with some certainty, no lower minimums are to be found.
- Apply a few steps of a local search procedure after New_Point step in the point. This procedure is used to bring the test points closer to the corresponding minimums. This speeds up the process of searching for new minima, although it obviously leads to an increase in function calls
2.1. A New Method for Trial Points
2.2. A New Stopping Rule
Algorithm 1: The original controlled random search method. The basic steps of the method |
Initialization Step: |
|
Min_Max Step: |
|
New_Point Step: |
|
Update Step: |
|
Local_Search Step: |
|
Algorithm 2: The steps of the new proposed method to create more efficient trial points for the controlled random search method |
|
3. Experiments
3.1. Test Functions
- Bf1 function, defined as:
- Bf2 function:
- Branin function: with .
- CM–Cosine Mixture function:
- Camel function:
- Easom function:
- Exponential function:In the conducted experiments, the values with were used, and the corresponding functions were denoted as EXP2, EXP4, EXP8, EXP16, EXP32, EXP64, EXP100;
- Goldstein & Price:
- Griewank2 function:
- Gkls function: is a function with w local minima, described in [34] with . In the conducted experiments, we have used and , and the functions are denoted by the labels GKLS250 and GKLS350;
- Guilin–Hills function: and being positive integers. In our experiments, we have used with 50 local minima in each function. The produced functions are entitled GUILIN550 and GUILIN1050;
- Hansen function: , ;
- Hartman 3 function:
- Hartman 6 function:
- Rastrigin function:
- Rosenbrock function:In our experiments we used this function with ;
- Shekel 7 function:
- Shekel 5 function:
- Shekel 10 function:
- Sinusoidal function:In our experiments, we used and , and the corresponding functions are denoted by the labels SINU4, SINU8, SINU16, SINU32;
- Test2N function. This function is given by the equationIn the conducted experiments the n has the values 4, 5, 6, 7;
- Test30N function. This function is given by
3.2. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Törn, A.; Žilinskas, A. Global Optimization Volume 350 of Lecture Notes in Computer Science; Springer: Heidelberg, Germany, 1987. [Google Scholar]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Multi-objective global optimization for hydrologic models. J. Hydrol. 1998, 204, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Wales, D.J.; Scheraga, H.A. Global Optimization of Clusters, Crystals, and Biomolecules. Science 1999, 27, 1368–1372. [Google Scholar] [CrossRef] [Green Version]
- Pardalos, P.M.; Shalloway, D.; Xue, G. Optimization methods for computing global minima of nonconvex potential energy functions. J. Glob. Optim. 1994, 4, 117–133. [Google Scholar] [CrossRef]
- Balsa-Canto, E.; Banga, J.R.; Egea, J.A.; Fernandez-Villaverde, A.; de Hijas-Liste, G.M. Global Optimization in Systems Biology: Stochastic Methods and Their Applications. In Advances in Systems Biology. Advances in Experimental Medicine and Biology; Goryanin, I., Goryachev, A., Eds.; Springer: New York, NY, USA, 2012; Volume 736. [Google Scholar] [CrossRef] [Green Version]
- Boutros, P.C.; Ewing, A.D.; Ellrott, K.; Norman, T.C.; Dang, K.K.; Hu, Y.; Kellen, M.R.; Suver, C.; Bare, J.C.; Stein, L.D.; et al. Global optimization of somatic variant identification in cancer genomes with a global community challenge. Nat. Genet. 2014, 46, 318–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Eglese, R.W. Simulated annealing: A tool for operational research. Simulated Anneal. Tool Oper. Res. 1990, 46, 271–281. [Google Scholar] [CrossRef]
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing Company: Reading, MA, USA, 1989. [Google Scholar]
- Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin, Germany, 1996. [Google Scholar]
- Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Duarte, A.; Martí, R.; Glover, F.; Gortazar, F. Hybrid scatter tabu search for unconstrained global optimization. Ann. Oper. Res. 2011, 183, 95–123. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.K.; Blackwell, T. Particle swarm optimization An Overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
- Price, W.L. Global Optimization by Controlled Random Search. Comput. J. 1977, 20, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.N.; Ferguson, J.F. Constrained inversion of seismic refraction data using the controlled random search. Geophysics 2000, 65, 1622–1630. [Google Scholar] [CrossRef]
- Bortolozo, C.A.; Porsani, J.L.; dos Santos, F.A.M.; Almeida, E.R. VES/TEM 1D joint inversion by using Controlled Random Search (CRS) algorithm. J. Appl. Geophys. 2015, 112, 157–174. [Google Scholar] [CrossRef]
- Haslinger, J.; Jedelský, D.; Kozubek, T.; Tvrdík, J. Genetic and Random Search Methods in Optimal Shape Design Problems. J. Glob. Optim. 2000, 16, 109–131. [Google Scholar] [CrossRef]
- Gupta, R.; Chandan, M. Use of “Controlled Random Search Technique for Global Optimization” in Animal Diet Problem. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 284–287. [Google Scholar]
- Mehta, R.C.; Tiwari, S.B. Controlled random search technique for estimation of convective heat transfer coefficient. Heat. Mass. Transfer. 2007, 43, 1171–1177. [Google Scholar] [CrossRef]
- Ali, M.M.; Storey, C. Modified Controlled Random Search Algorithms. Int. J. Comput. Math. 1994, 53, 229–235. [Google Scholar] [CrossRef]
- Di Pillo, G.; Lucidi, S.; Palagi, L.; Roma, M. A Controlled Random Search Algorithm with Local Newton-type Search for Global Optimization. In High Performance Algorithms and Software in Nonlinear Optimization. Applied Optimization; De Leone, R., Murli, A., Pardalos, P.M., Toraldo, G., Eds.; Springer: Boston, MA, USA, 1998; Volume 24. [Google Scholar] [CrossRef] [Green Version]
- Lucidi, S.; Rochetich, F.; Roma, M. Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization. Siam J. Optim. 1998, 8, 916–939. [Google Scholar] [CrossRef]
- Kaelo, P.; Ali, M.M. Some Variants of the Controlled Random Search Algorithm for Global Optimization. J. Optim. Appl. 2006, 130, 253–264. [Google Scholar] [CrossRef]
- Manzanares-filho, N.; Albuquerque, R.B.F. Accelerating Controlled Random Search Algorithms Using a Distribution Strategy. In Proceedings of the EngOpt 2008—International Conference on Engineering Optimization, Rio de Janeiro, Brazil, 1–5 June 2008. [Google Scholar]
- Tsoulos, I.G.; Lagaris, I.E. Genetically controlled random search: A global optimization method for continuous multidimensional functions. Comput. Phys. Commun. 2006, 174, 152–159. [Google Scholar] [CrossRef]
- Tsoulos, I.G. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 2008, 203, 598–607. [Google Scholar] [CrossRef]
- Ali, M.M.; Khompatraporn, C.; Zabinsky, Z.B. A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. J. Glob. Optim. 2005, 31, 635–672. [Google Scholar] [CrossRef]
- Floudas, C.A.; Pardalos, P.M.; Adjiman, C.; Esposoto, W.; Gümüs, Z.; Harding, S.; Klepeis, J.; Meyer, C.; Schweiger, C. Handbook of Test Problems in Local and Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netheralnds, 1999. [Google Scholar]
- Gaviano, M.; Ksasov, D.E.; Lera, D.; Sergeyev, Y.D. Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480. [Google Scholar] [CrossRef]
- Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566. [Google Scholar] [CrossRef]
FUNCTION | CRS-R | CRS-C | NEWCRS-R | NEWCRS-C |
---|---|---|---|---|
BF1 | 1.37% | 2523 | 0.00% | 1689 |
BF2 | 1.33% | 2506 | 0.17% | 1569 |
BRANIN | 16.00% | 2014 | 9.13% | 851 |
CAMEL | 1.67% | 2235 | 0.20% | 1487 |
EASOM | 51.03% | 591 | 11.43% | 635 |
EXP2 | 3.03% | 1290 | 0.70% | 644 |
EXP4 | 2.67% | 4688 | 0.00% | 1302 |
EXP8 | 2.77% | 16,453 | 0.00% | 2601 |
EXP16 | 4.00% | 47,400 | 0.00% | 5207 |
EXP32 | 7.70% | 93,520 | 0.00% | 10,414 |
EXP64 | 18.80% | 135,638 | 0.00% | 13,602 |
EXP100 | 38.53% | 129,327 | 0.00% | 14,506 |
GKLS250 | 3.87% | 1784 | 0.27% | 1684 |
GKLS350 | 6.43% | 3881 | 0.03% | 2088 |
GOLDSTEIN | 3.60% | 2154 | 0.70% | 1829 |
GRIEWANK2 | 1.20% | 2503 | 0.03% | 2742 |
GUILIN550 | 8.33% | 9129 | 0.00% | 25,333 |
GUILIN1050 | 9.63% | 30,806 | 0.00 | 10,561 |
HANSEN | 47.60% | 2643 | 4.03% | 1736 |
HARTMAN3 | 9.97% | 3009 | 6.13% | 1331 |
HARTMAN6 | 13.37% | 13,615 | 0.00% | 6091 |
RASTRIGIN | 9.17% | 2130 | 1.33% | 2986 |
ROSENBROCK | 0.00% | 59,024 | 0.00% | 15,719 |
SHEKEL5 | 4.73% | 8974 | 0.00% | 2967 |
SHEKEL7 | 3.70% | 8606 | 0.00% | 3236 |
SHEKEL10 | 2.73% | 9264 | 0.00% | 3479 |
SINU4 | 3.90% | 6525 | 0.00% | 2889 |
SINU8 | 5.10% | 21,561 | 0.00% | 4946 |
SINU16 | 8.43% | 62,194 | 0.00% | 9539 |
SINU32 | 14.40% | 135,986 | 0.00% | 18,456 |
TEST2N4 | 24.57% | 10,198 | 0.00% | 3756 |
TEST2N5 | 34.17% | 20,850 | 0.00% | 4806 |
TEST2N6 | 42.50% | 43,290 | 0.00% | 6075 |
TEST2N7 | 50.37% | 92,658 | 0.00% | 7005 |
TEST30N3 | 24.10% | 4011 | 0.00% | 5691 |
TEST30N4 | 27.30% | 7432 | 0.00% | 8579 |
TOTAL | 13.67% | 1,000,412 | 0.86% | 208,031 |
FUNCTION | CRS-TIME | NEWCRS-TIME | DIFF |
---|---|---|---|
BF1 | 0.168 | 0.154 | 8.33% |
BF2 | 0.180 | 0.154 | 14.44% |
BRANIN | 0.209 | 0.138 | 33.97% |
CAMEL | 0.165 | 0.141 | 14.55% |
EASOM | 0.165 | 0.151 | 8.48% |
EXP2 | 0.165 | 0.143 | 13.33% |
EXP4 | 0.228 | 0.152 | 33.33% |
EXP8 | 0.629 | 0.187 | 70.27% |
EXP16 | 3.142 | 0.299 | 90.48% |
EXP32 | 14.364 | 1.082 | 92.47% |
EXP64 | 60.861 | 3.932 | 93.54% |
EXP100 | 144.794 | 9.386 | 93.52% |
GKLS250 | 0.592 | 0.593 | −0.17% |
GKLS350 | 0.658 | 0.599 | 8.97% |
GOLDSTEIN | 0.191 | 0.163 | 14.66% |
GRIEWANK2 | 0.174 | 0.166 | 4.60% |
GUILIN550 | 0.475 | 0.529 | −11.37% |
GUILIN1050 | 1.524 | 0.453 | 70.28% |
HANSEN | 0.217 | 0.292 | −34.56% |
HARTMAN3 | 0.21 | 0.163 | 22.38% |
HARTMAN6 | 0.514 | 0.262 | 49.03% |
RASTRIGIN | 0.168 | 0.16 | 4.76% |
ROSENBROCK | 5.31 | 0.584 | 89.00% |
SHEKEL5 | 0.321 | 0.203 | 36.76% |
SHEKEL7 | 0.302 | 0.218 | 27.81% |
SHEKEL10 | 0.325 | 0.271 | 16.62% |
SINU4 | 0.283 | 0.206 | 27.21% |
SINU8 | 0.897 | 0.369 | 58.86% |
SINU16 | 4.775 | 1.448 | 69.68% |
SINU32 | 24.413 | 8.999 | 63.14% |
TEST2N4 | 0.389 | 0.19 | 51.16% |
TEST2N5 | 0.733 | 0.209 | 71.49% |
TEST2N6 | 1.714 | 0.256 | 85.06% |
TEST2N7 | 4.326 | 0.264 | 93.90% |
TEST30N3 | 0.222 | 0.203 | 8.56% |
TEST30N4 | 0.324 | 0.239 | 26.23% |
TOTAL | 274.127 | 32.958 | 87.98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charilogis, V.; Tsoulos, I.; Tzallas, A.; Anastasopoulos, N. An Improved Controlled Random Search Method. Symmetry 2021, 13, 1981. https://doi.org/10.3390/sym13111981
Charilogis V, Tsoulos I, Tzallas A, Anastasopoulos N. An Improved Controlled Random Search Method. Symmetry. 2021; 13(11):1981. https://doi.org/10.3390/sym13111981
Chicago/Turabian StyleCharilogis, Vasileios, Ioannis Tsoulos, Alexandros Tzallas, and Nikolaos Anastasopoulos. 2021. "An Improved Controlled Random Search Method" Symmetry 13, no. 11: 1981. https://doi.org/10.3390/sym13111981
APA StyleCharilogis, V., Tsoulos, I., Tzallas, A., & Anastasopoulos, N. (2021). An Improved Controlled Random Search Method. Symmetry, 13(11), 1981. https://doi.org/10.3390/sym13111981