Bayesian Estimation for the Coefficients of Variation of Birnbaum–Saunders Distributions
Abstract
:1. Introduction
2. The Confidence Interval for the CV of a BS Distribution
2.1. Generalized Confidence Interval
2.2. Bootstrap Confidence Interval
2.3. Bayesian Credible Interval
3. Confidence Intervals for the Difference between the CVs of BS Distributions
3.1. Generalized Confidence Interval
3.2. Bootstrap Confidence Interval
3.3. Bayesian Credible Interval
- Set the values for and , where is a constant.
- At the ith step:
- (a)
- i
- Generate and , and then compute . If , set ; otherwise, repeat the process.
- ii
- Generate and then
- (b)
- i
- Generate and , and then compute . If , set ; otherwise, repeat the process.
- ii
- Generate and then
- (c)
- Calculate the Bayesian estimator of by using
- Repeat Step 3 N times.
- Calculate the confidence interval for by applying
4. Simulation Studies
5. An Empirical Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
- Chang, D.S.; Tang, L.C. Reliability bounds and critical time for the Birnbaum-Saunders distribution. IEEE Trans. Reliab. 1993, 42, 464–469. [Google Scholar] [CrossRef]
- Leiva, V.; Athayde, M.E.; Azevedo, C.; Marchant, C. Modeling wind energy flux by a Birnbaum-Saunders distribution with an unknown shift parameter. J. Appl. Stat. 2011, 38, 2819–2838. [Google Scholar] [CrossRef]
- Leiva, V.; Sanhueza, A.; Angulo, J.M. A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stoch. Environ. Res. Risk Assess. 2009, 23, 299–307. [Google Scholar] [CrossRef]
- Leiva, V.; Ruggeri, F.; Saulo, H.; Vivanco, J.F. A methodology based on the Birnbaum–Saunders distribution for reliability analysis applied to nano-materials. Reliab. Eng. Syst. Saf. 2017, 157, 192–201. [Google Scholar] [CrossRef]
- Durham, S.D.; Padgett, W.J. A cumulative damage model for system failure with application to carbon fibers and composites. Technometrics 1997, 39, 34–44. [Google Scholar] [CrossRef]
- Desmond, A.F. Stochastic models of failure in random environments. Can. J. Stat. 1985, 13, 171–183. [Google Scholar] [CrossRef]
- Guiraud, P.; Leiva, V.; Fierro, R. A non central version of the Birnbaum–Saunders distribution for reliability analysis. IEEE Trans. Reliab. 2009, 58, 152–160. [Google Scholar] [CrossRef]
- Leiva, V.; Santos-Neto, M.; Cysneiros, F.J.A.; Barros, M. Birnbaum–Saunders statistical modelling: A new approach. Stat. Model. 2014, 14, 21–48. [Google Scholar] [CrossRef]
- Lio, Y.L.; Tsai, T.R.; Wu, S.J. Acceptance sampling plans from truncated life tests based on the Birnbaum–Saunders distribution for percentiles. Commun. Stat.-Simul. Comput. 2010, 39, 119–136. [Google Scholar] [CrossRef]
- Marchant, C.; Leiva, V.; Cysneiros, F.J.A.; Vivanco, J.F. Diagnostics in multivariate generalized Birnbaum–Saunders regression models. J. Appl. Stat. 2016, 43, 2829–2849. [Google Scholar] [CrossRef]
- Tian, L. Inferences on the common coefficient of variation. Stat. Med. 2005, 24, 2213–2220. [Google Scholar] [CrossRef]
- Mahmoudvand, R.; Hassani, H. Two new confidence intervals for the coefficient of variation in a normal distribution. J. Appl. Stat. 2009, 36, 429–442. [Google Scholar] [CrossRef]
- Banik, S.; Kibria, B.M.G. Estimating the Population Coefficient of Variation by Confidence Intervals. Commun. Stat.-Simul. Comput. 2011, 40, 1236–1261. [Google Scholar] [CrossRef]
- Sangnawakij, P.; Niwitpong, S.-A. Confidence intervals for coefficients of variation in two-parameter exponential distributions. Commun. Stat.-Simul. Comput. 2017, 46, 6618–6630. [Google Scholar] [CrossRef]
- Thangjai, W.; Niwitpong, S.-A.; Niwitpong, S. Adjusted generalized confidence intervals for the common coefficient of variation of several normal populations. Commun. Stat.-Simul. Comput. 2020, 49, 194–206. [Google Scholar] [CrossRef]
- Yosboonruang, N.; Niwitpong, S.-A.; Niwitpong, S. Measuring the dispersion of rainfall using Bayesian confidence intervals for coefficient of variation of delta-lognormal distribution: A study from Thailand. PeerJ 2019, 7, e7344. [Google Scholar] [CrossRef]
- La-Ongkaew, M.; Niwitpong, S.-A.; Niwitpong, S. Confidence intervals for the difference between the coefficients of variation of Weibull distributions for analyzing wind speed dispersion. PeerJ 2021, 9, e11676. [Google Scholar] [CrossRef]
- Engelhardt, M.; Bain, L.J.; Wright, F.T. Inference on the parameters of the Birnbaum–Saunders fatigue life distribution based on maximum likelihood estimation. Technometrics 1981, 23, 251–255. [Google Scholar] [CrossRef]
- Wu, J.; Wong, A.C.M. Improved interval estimation for the two-parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 2004, 47, 809–821. [Google Scholar] [CrossRef]
- Ng, H.K.T.; Kundu, D.; Balakrishnan, N. Point and interval estimation for the two-parameter Birnbaum–Saunders distribution based on type-II censored samples. Comput. Stat. Data Anal. 2006, 50, 3222–3242. [Google Scholar] [CrossRef]
- Xu, A.; Tang, Y. Reference analysis for Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 2010, 54, 185–192. [Google Scholar] [CrossRef]
- Wang, B.X. Generalized interval estimation for the Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 2012, 56, 4320–4326. [Google Scholar] [CrossRef]
- Niu, C.; Guo, X.; Zhu, L. Comparison of several Birnbaum–Saunders distributions. J. Stat. Comput. Simul. 2014, 84, 2721–2733. [Google Scholar] [CrossRef]
- Li, Y.; Xu, A. Fiducial inference for Birnbaum-Saunders distribution. J. Stat. Comput. Simul. 2016, 86, 1673–1685. [Google Scholar] [CrossRef]
- Guo, X.; Wu, H.; Li, G.; Li, Q. Inference for the common mean of several Birnbaum–Saunders populations. J. Appl. Stat. 2017, 44, 941–954. [Google Scholar] [CrossRef]
- Weerahandi, S. Generalized confidence intervals. J. Am. Stat. Assoc. 1993, 88, 899–905. [Google Scholar] [CrossRef]
- Sun, Z.L. The confidence intervals for the scale parameter of the Birnbaum–Saunders fatigue life distribution. Acta Armamentarii 2009, 30, 1558–1561. (In Chinese) [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Ng, H.K.T.; Kundu, D.; Balakrishnan, N. Modified moment estimation for the two-parameter Birnbaum–Saunders distribution. Comput. Stat. Data Anal. 2003, 43, 283–298. [Google Scholar] [CrossRef]
- Lemonte, A.J.; Simas, A.B.; Cribari-Neto, F. Bootstrap-based improved estimators for the two-parameter Birnbaum–Saunders distribution. J. Stat. Comput. Simul. 2008, 78, 37–49. [Google Scholar] [CrossRef]
- MacKinnon, J.G.; Smith, J.A.A. Approximate bias correction in econometrics. J. Econom. 1998, 85, 205–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Sun, X.; Park, C. Bayesian analysis of Birnbaum-Saunders distribution via the generalized ratio-of-uniforms method. Comput. Stat. 2016, 31, 207–225. [Google Scholar] [CrossRef]
- Wakefield, J.C.; Gelfand, A.E.; Smith, A.F.M. Efficient generation of random variates via the ratio-of-uniforms method. Stat. Comput. 1991, 1, 129–133. [Google Scholar] [CrossRef]
- Box, G.E.P.; Tiao, G.C. Bayesian Inference in Statistical Analysis; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Leiva, V.; Barros, M.; Paula, G.A.; Sanhueza, A. Generalized Birnbaum–Saunders distributions applied to air pollutant concentration. Environmetrics 2008, 19, 235–249. [Google Scholar] [CrossRef]
- Leiva, V.; Marchant, C.; Ruggeri, F.; Saulo, H. A criterion for environmental assessment using Birnbaum–Saunders attribute control charts. Environmetrics 2015, 26, 463–476. [Google Scholar] [CrossRef]
- Pollution Control Department Thailand. Available online: http://www.pcd.go.th/ (accessed on 9 January 2021).
Coverage Probability | Average Length | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | GCI | BCI | BayCI | HPD | GCI | BCI | BayCI | HPD | |
10 | 0.10 | 0.952 | 0.881 | 0.950 | 0.945 | 0.1112 | 0.0787 | 0.1089 | 0.1002 |
0.25 | 0.951 | 0.886 | 0.949 | 0.948 | 0.2855 | 0.2010 | 0.2783 | 0.2563 | |
0.50 | 0.949 | 0.883 | 0.948 | 0.940 | 0.5574 | 0.3983 | 0.5433 | 0.5060 | |
0.75 | 0.950 | 0.878 | 0.948 | 0.941 | 0.7480 | 0.5540 | 0.7278 | 0.6910 | |
1.00 | 0.950 | 0.876 | 0.947 | 0.933 | 0.8461 | 0.6497 | 0.8206 | 0.7929 | |
2.00 | 0.951 | 0.875 | 0.948 | 0.925 | 0.7678 | 0.6507 | 0.7341 | 0.7258 | |
20 | 0.10 | 0.949 | 0.917 | 0.947 | 0.946 | 0.0693 | 0.0587 | 0.0688 | 0.0658 |
0.25 | 0.948 | 0.912 | 0.945 | 0.942 | 0.1766 | 0.1491 | 0.1752 | 0.1676 | |
0.50 | 0.953 | 0.911 | 0.950 | 0.946 | 0.3533 | 0.2994 | 0.3499 | 0.3360 | |
0.75 | 0.951 | 0.913 | 0.950 | 0.943 | 0.4939 | 0.4240 | 0.4883 | 0.4731 | |
1.00 | 0.953 | 0.915 | 0.953 | 0.942 | 0.5734 | 0.5004 | 0.5654 | 0.5529 | |
2.00 | 0.948 | 0.910 | 0.947 | 0.931 | 0.5284 | 0.4858 | 0.5121 | 0.5076 | |
30 | 0.10 | 0.946 | 0.917 | 0.944 | 0.943 | 0.0544 | 0.0487 | 0.0541 | 0.0525 |
0.25 | 0.948 | 0.927 | 0.946 | 0.944 | 0.1386 | 0.1239 | 0.1378 | 0.1334 | |
0.50 | 0.951 | 0.923 | 0.951 | 0.945 | 0.2792 | 0.2496 | 0.2775 | 0.2693 | |
0.75 | 0.952 | 0.922 | 0.950 | 0.942 | 0.3937 | 0.3546 | 0.3909 | 0.3816 | |
1.00 | 0.947 | 0.920 | 0.944 | 0.939 | 0.4621 | 0.4213 | 0.4576 | 0.4495 | |
2.00 | 0.946 | 0.919 | 0.942 | 0.933 | 0.4251 | 0.4023 | 0.4160 | 0.4124 | |
50 | 0.10 | 0.954 | 0.940 | 0.952 | 0.951 | 0.0410 | 0.0383 | 0.0408 | 0.0399 |
0.25 | 0.945 | 0.939 | 0.945 | 0.946 | 0.1045 | 0.0974 | 0.1040 | 0.1017 | |
0.50 | 0.945 | 0.931 | 0.944 | 0.941 | 0.2104 | 0.1960 | 0.2093 | 0.2048 | |
0.75 | 0.954 | 0.935 | 0.950 | 0.947 | 0.2992 | 0.2798 | 0.2974 | 0.2921 | |
1.00 | 0.950 | 0.932 | 0.948 | 0.940 | 0.3540 | 0.3339 | 0.3517 | 0.3468 | |
2.00 | 0.946 | 0.927 | 0.943 | 0.935 | 0.3256 | 0.3140 | 0.3210 | 0.3184 | |
100 | 0.10 | 0.948 | 0.941 | 0.948 | 0.945 | 0.0284 | 0.0274 | 0.0283 | 0.0279 |
0.25 | 0.950 | 0.942 | 0.949 | 0.948 | 0.0722 | 0.0693 | 0.0718 | 0.0707 | |
0.50 | 0.944 | 0.935 | 0.941 | 0.939 | 0.1460 | 0.1404 | 0.1454 | 0.1432 | |
0.75 | 0.951 | 0.938 | 0.950 | 0.945 | 0.2088 | 0.2013 | 0.2079 | 0.2052 | |
1.00 | 0.951 | 0.938 | 0.947 | 0.944 | 0.2481 | 0.2398 | 0.2468 | 0.2441 | |
2.00 | 0.951 | 0.940 | 0.951 | 0.945 | 0.2283 | 0.2233 | 0.2262 | 0.2244 |
Coverage Probability | Average Length | ||||||||
---|---|---|---|---|---|---|---|---|---|
(n,m) | (,) | GCI | BCI | BayCI | HPD | GCI | BCI | BayCI | HPD |
(10,10) | (0.25,0.25) | 0.952 | 0.901 | 0.945 | 0.964 | 0.4265 | 0.2873 | 0.4156 | 0.4094 |
(0.25,0.50) | 0.947 | 0.889 | 0.943 | 0.953 | 0.6535 | 0.4526 | 0.6367 | 0.6216 | |
(0.25,1.00) | 0.952 | 0.877 | 0.950 | 0.939 | 0.9046 | 0.6811 | 0.8783 | 0.8616 | |
(0.25,2.00) | 0.957 | 0.877 | 0.953 | 0.937 | 0.8262 | 0.6851 | 0.7925 | 0.7837 | |
(0.50,0.50) | 0.951 | 0.895 | 0.947 | 0.957 | 0.8296 | 0.5700 | 0.8072 | 0.7977 | |
(0.50,1.00) | 0.951 | 0.889 | 0.948 | 0.947 | 1.0478 | 0.7696 | 1.0171 | 1.0066 | |
(0.50,2.00) | 0.956 | 0.881 | 0.951 | 0.942 | 0.9672 | 0.7729 | 0.9319 | 0.9186 | |
(1.00,1.00) | 0.955 | 0.895 | 0.950 | 0.944 | 1.2323 | 0.9279 | 1.1950 | 1.1840 | |
(1.00,2.00) | 0.954 | 0.884 | 0.948 | 0.938 | 1.1638 | 0.9336 | 1.1231 | 1.1083 | |
(2.00,2.00) | 0.949 | 0.879 | 0.944 | 0.931 | 1.0985 | 0.9410 | 1.0528 | 1.0434 | |
(20,20) | (0.25,0.25) | 0.948 | 0.924 | 0.944 | 0.954 | 0.2576 | 0.2126 | 0.2553 | 0.2525 |
(0.25,0.50) | 0.950 | 0.917 | 0.947 | 0.952 | 0.4027 | 0.3359 | 0.3990 | 0.3917 | |
(0.25,1.00) | 0.947 | 0.912 | 0.944 | 0.939 | 0.6042 | 0.5241 | 0.5959 | 0.5863 | |
(0.25,2.00) | 0.954 | 0.913 | 0.951 | 0.940 | 0.5585 | 0.5094 | 0.5426 | 0.5378 | |
(0.50,0.50) | 0.947 | 0.921 | 0.947 | 0.952 | 0.5150 | 0.4268 | 0.5104 | 0.5052 | |
(0.50,1.00) | 0.955 | 0.917 | 0.951 | 0.946 | 0.6849 | 0.5869 | 0.6764 | 0.6695 | |
(0.50,2.00) | 0.955 | 0.920 | 0.951 | 0.945 | 0.6412 | 0.5743 | 0.6261 | 0.6197 | |
(1.00,1.00) | 0.950 | 0.921 | 0.948 | 0.943 | 0.8233 | 0.7114 | 0.8118 | 0.8050 | |
(1.00,2.00) | 0.957 | 0.922 | 0.950 | 0.946 | 0.7866 | 0.7043 | 0.7694 | 0.7614 | |
(2.00,2.00) | 0.947 | 0.914 | 0.945 | 0.935 | 0.7526 | 0.6984 | 0.7300 | 0.7240 | |
(30,30) | (0.25,0.25) | 0.950 | 0.933 | 0.947 | 0.952 | 0.2003 | 0.1760 | 0.1989 | 0.1970 |
(0.25,0.50) | 0.949 | 0.934 | 0.946 | 0.950 | 0.3171 | 0.2805 | 0.3153 | 0.3103 | |
(0.25,1.00) | 0.956 | 0.934 | 0.956 | 0.950 | 0.4840 | 0.4392 | 0.4795 | 0.4727 | |
(0.25,2.00) | 0.953 | 0.920 | 0.951 | 0.944 | 0.4500 | 0.4231 | 0.4410 | 0.4373 | |
(0.50,0.50) | 0.952 | 0.935 | 0.950 | 0.953 | 0.4027 | 0.3546 | 0.4001 | 0.3964 | |
(0.50,1.00) | 0.953 | 0.937 | 0.952 | 0.951 | 0.5456 | 0.4914 | 0.5407 | 0.5355 | |
(0.50,2.00) | 0.954 | 0.927 | 0.952 | 0.946 | 0.5116 | 0.4748 | 0.5027 | 0.4982 | |
(1.00,1.00) | 0.952 | 0.934 | 0.950 | 0.947 | 0.6606 | 0.5984 | 0.6540 | 0.6484 | |
(1.00,2.00) | 0.950 | 0.930 | 0.948 | 0.944 | 0.6323 | 0.5865 | 0.6225 | 0.6163 | |
(2.00,2.00) | 0.947 | 0.926 | 0.945 | 0.936 | 0.6038 | 0.5750 | 0.5910 | 0.5861 | |
(50,50) | (0.25,0.25) | 0.949 | 0.936 | 0.948 | 0.951 | 0.1494 | 0.1378 | 0.1486 | 0.1473 |
(0.25,0.50) | 0.951 | 0.941 | 0.949 | 0.950 | 0.2373 | 0.2200 | 0.2361 | 0.2330 | |
(0.25,1.00) | 0.948 | 0.930 | 0.945 | 0.939 | 0.3698 | 0.3475 | 0.3673 | 0.3629 | |
(0.25,2.00) | 0.950 | 0.934 | 0.951 | 0.944 | 0.3423 | 0.3297 | 0.3376 | 0.3348 | |
(0.50,0.50) | 0.949 | 0.939 | 0.947 | 0.950 | 0.3020 | 0.2788 | 0.3006 | 0.2980 | |
(0.50,1.00) | 0.951 | 0.938 | 0.950 | 0.947 | 0.4144 | 0.3877 | 0.4118 | 0.4080 | |
(0.50,2.00) | 0.949 | 0.936 | 0.947 | 0.944 | 0.3893 | 0.3717 | 0.3849 | 0.3816 | |
(1.00,1.00) | 0.947 | 0.936 | 0.948 | 0.945 | 0.5032 | 0.4722 | 0.5000 | 0.4958 | |
(1.00,2.00) | 0.949 | 0.933 | 0.948 | 0.941 | 0.4826 | 0.4597 | 0.4773 | 0.4730 | |
(2.00,2.00) | 0.951 | 0.937 | 0.949 | 0.944 | 0.4614 | 0.4479 | 0.4549 | 0.4511 | |
(100,100) | (0.25,0.25) | 0.953 | 0.944 | 0.951 | 0.950 | 0.1025 | 0.0981 | 0.1020 | 0.1012 |
(0.25,0.50) | 0.951 | 0.942 | 0.948 | 0.947 | 0.1634 | 0.1567 | 0.1626 | 0.1609 | |
(0.25,1.00) | 0.948 | 0.937 | 0.947 | 0.940 | 0.2586 | 0.2498 | 0.2574 | 0.2547 | |
(0.25,2.00) | 0.948 | 0.940 | 0.947 | 0.942 | 0.2394 | 0.2338 | 0.2372 | 0.2353 | |
(0.50,0.50) | 0.950 | 0.940 | 0.949 | 0.945 | 0.2080 | 0.1991 | 0.2069 | 0.2052 | |
(0.50,1.00) | 0.948 | 0.940 | 0.948 | 0.946 | 0.2888 | 0.2780 | 0.2873 | 0.2848 | |
(0.50,2.00) | 0.951 | 0.942 | 0.949 | 0.946 | 0.2712 | 0.2641 | 0.2692 | 0.2668 | |
(1.00,1.00) | 0.951 | 0.943 | 0.952 | 0.947 | 0.3519 | 0.3398 | 0.3503 | 0.3474 | |
(1.00,2.00) | 0.955 | 0.947 | 0.952 | 0.949 | 0.3377 | 0.3287 | 0.3353 | 0.3324 | |
(2.00,2.00) | 0.946 | 0.938 | 0.944 | 0.939 | 0.3233 | 0.3175 | 0.3203 | 0.3176 |
Coverage Probability | Average Length | ||||||||
---|---|---|---|---|---|---|---|---|---|
(n,m) | (,) | GCI | BCI | BayCI | HPD | GCI | BCI | BayCI | HPD |
(10,20) | (0.25,0.25) | 0.953 | 0.906 | 0.951 | 0.961 | 0.3479 | 0.2522 | 0.3409 | 0.3323 |
(0.25,0.50) | 0.945 | 0.909 | 0.942 | 0.953 | 0.4746 | 0.3655 | 0.4671 | 0.4615 | |
(0.25,1.00) | 0.954 | 0.917 | 0.951 | 0.952 | 0.6537 | 0.5435 | 0.6432 | 0.6361 | |
(0.25,2.00) | 0.952 | 0.908 | 0.944 | 0.940 | 0.6075 | 0.5289 | 0.5895 | 0.5830 | |
(0.50,0.50) | 0.952 | 0.935 | 0.950 | 0.953 | 0.4027 | 0.3546 | 0.4001 | 0.3964 | |
(0.50,1.00) | 0.949 | 0.917 | 0.947 | 0.950 | 0.8265 | 0.6459 | 0.8108 | 0.8008 | |
(0.50,2.00) | 0.944 | 0.908 | 0.942 | 0.940 | 0.7829 | 0.6344 | 0.7605 | 0.7451 | |
(1.00,1.00) | 0.951 | 0.904 | 0.948 | 0.945 | 1.0429 | 0.8264 | 1.0173 | 1.0049 | |
(1.00,2.00) | 0.948 | 0.901 | 0.944 | 0.938 | 1.0105 | 0.8192 | 0.9797 | 0.9633 | |
(2.00,2.00) | 0.950 | 0.892 | 0.948 | 0.933 | 0.9420 | 0.8290 | 0.9069 | 0.8987 | |
(30,20) | (0.25,0.25) | 0.948 | 0.925 | 0.944 | 0.950 | 0.2296 | 0.1944 | 0.2278 | 0.2248 |
(0.25,0.50) | 0.956 | 0.925 | 0.953 | 0.955 | 0.3854 | 0.3261 | 0.3820 | 0.3725 | |
(0.25,1.00) | 0.954 | 0.921 | 0.952 | 0.945 | 0.5910 | 0.5157 | 0.5831 | 0.5721 | |
(0.25,2.00) | 0.954 | 0.916 | 0.953 | 0.942 | 0.5469 | 0.5024 | 0.5307 | 0.5262 | |
(0.50,0.50) | 0.953 | 0.930 | 0.951 | 0.953 | 0.4615 | 0.3922 | 0.4575 | 0.4523 | |
(0.50,1.00) | 0.952 | 0.916 | 0.950 | 0.946 | 0.6441 | 0.5614 | 0.6362 | 0.6282 | |
(0.50,2.00) | 0.955 | 0.917 | 0.949 | 0.942 | 0.6007 | 0.5488 | 0.5852 | 0.5799 | |
(1.00,1.00) | 0.952 | 0.928 | 0.951 | 0.948 | 0.7460 | 0.6576 | 0.7372 | 0.7303 | |
(1.00,2.00) | 0.956 | 0.928 | 0.952 | 0.945 | 0.7066 | 0.6484 | 0.6915 | 0.6852 | |
(2.00,2.00) | 0.950 | 0.921 | 0.946 | 0.939 | 0.6821 | 0.6403 | 0.6642 | 0.6587 | |
(30,50) | (0.25,0.25) | 0.949 | 0.933 | 0.947 | 0.951 | 0.1762 | 0.1580 | 0.1753 | 0.1732 |
(0.25,0.50) | 0.954 | 0.938 | 0.952 | 0.954 | 0.2561 | 0.2335 | 0.2548 | 0.2522 | |
(0.25,1.00) | 0.960 | 0.940 | 0.957 | 0.952 | 0.3824 | 0.3569 | 0.3801 | 0.3759 | |
(0.25,2.00) | 0.949 | 0.934 | 0.946 | 0.943 | 0.3548 | 0.3379 | 0.3499 | 0.3469 | |
(0.50,0.50) | 0.941 | 0.923 | 0.940 | 0.945 | 0.3551 | 0.3188 | 0.3531 | 0.3492 | |
(0.50,1.00) | 0.944 | 0.929 | 0.943 | 0.941 | 0.4551 | 0.4173 | 0.4519 | 0.4480 | |
(0.50,2.00) | 0.953 | 0.937 | 0.952 | 0.947 | 0.4319 | 0.4026 | 0.4271 | 0.4227 | |
(1.00,1.00) | 0.951 | 0.938 | 0.950 | 0.949 | 0.5874 | 0.5393 | 0.5818 | 0.5766 | |
(1.00,2.00) | 0.948 | 0.931 | 0.945 | 0.938 | 0.5680 | 0.5272 | 0.5612 | 0.5550 | |
(2.00,2.00) | 0.952 | 0.934 | 0.951 | 0.945 | 0.5369 | 0.5150 | 0.5269 | 0.5226 | |
(100,50) | (0.25,0.25) | 0.953 | 0.942 | 0.952 | 0.953 | 0.1279 | 0.1197 | 0.1273 | 0.1259 |
(0.25,0.50) | 0.953 | 0.939 | 0.949 | 0.946 | 0.2236 | 0.2085 | 0.2224 | 0.2187 | |
(0.25,1.00) | 0.949 | 0.931 | 0.948 | 0.941 | 0.3611 | 0.3408 | 0.3588 | 0.3540 | |
(0.25,2.00) | 0.951 | 0.927 | 0.946 | 0.939 | 0.3339 | 0.3221 | 0.3292 | 0.3265 | |
(0.50,0.50) | 0.949 | 0.936 | 0.948 | 0.949 | 0.2584 | 0.2419 | 0.2574 | 0.2545 | |
(0.50,1.00) | 0.952 | 0.937 | 0.950 | 0.947 | 0.3840 | 0.3622 | 0.3812 | 0.3771 | |
(0.50,2.00) | 0.948 | 0.935 | 0.946 | 0.942 | 0.3569 | 0.3443 | 0.3525 | 0.3495 | |
(1.00,1.00) | 0.944 | 0.936 | 0.946 | 0.942 | 0.4339 | 0.4118 | 0.4315 | 0.4275 | |
(1.00,2.00) | 0.949 | 0.933 | 0.944 | 0.938 | 0.4103 | 0.3969 | 0.4055 | 0.4021 | |
(2.00,2.00) | 0.949 | 0.941 | 0.947 | 0.943 | 0.3987 | 0.3879 | 0.3937 | 0.3904 |
Distributions | BS | Lognormal | Exponential | Gamma | Weibull |
---|---|---|---|---|---|
March | 328.6784 | 329.4578 | 347.0312 | 330.2267 | 331.8988 |
April | 285.6899 | 285.9449 | 323.6329 | 287.0071 | 290.2045 |
Distributions | BS | Lognormal | Exponential | Gamma | Weibull |
---|---|---|---|---|---|
March | 331.5463 | 332.3257 | 348.4652 | 333.0947 | 334.7668 |
April | 288.4923 | 288.7473 | 325.0341 | 289.8095 | 293.0068 |
March | April | The Difference of CVs | ||||
---|---|---|---|---|---|---|
Methods | Interval | Length | Interval | Length | Interval | Length |
GCI | 0.4723–0.8009 | 0.3287 | 0.2998–0.5157 | 0.2160 | 0.0311–0.4311 | 0.4001 |
BCI | 0.4538–0.7380 | 0.2842 | 0.2895–0.4784 | 0.1889 | 0.0454–0.3925 | 0.3471 |
BayCI | 0.4743–0.7707 | 0.2964 | 0.3029–0.5071 | 0.2042 | 0.0275–0.4299 | 0.4024 |
HPD | 0.4694–0.7587 | 0.2892 | 0.2859–0.4819 | 0.1960 | 0.0403–0.4394 | 0.3991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puggard, W.; Niwitpong, S.-A.; Niwitpong, S. Bayesian Estimation for the Coefficients of Variation of Birnbaum–Saunders Distributions. Symmetry 2021, 13, 2130. https://doi.org/10.3390/sym13112130
Puggard W, Niwitpong S-A, Niwitpong S. Bayesian Estimation for the Coefficients of Variation of Birnbaum–Saunders Distributions. Symmetry. 2021; 13(11):2130. https://doi.org/10.3390/sym13112130
Chicago/Turabian StylePuggard, Wisunee, Sa-Aat Niwitpong, and Suparat Niwitpong. 2021. "Bayesian Estimation for the Coefficients of Variation of Birnbaum–Saunders Distributions" Symmetry 13, no. 11: 2130. https://doi.org/10.3390/sym13112130
APA StylePuggard, W., Niwitpong, S. -A., & Niwitpong, S. (2021). Bayesian Estimation for the Coefficients of Variation of Birnbaum–Saunders Distributions. Symmetry, 13(11), 2130. https://doi.org/10.3390/sym13112130