Characterization of Almost Yamabe Solitons and Gradient Almost Yamabe Solitons with Conformal Vector Fields
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamilton, R.S. The Ricci flow on surfaces. In Mathematics and general relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences on Mathematics in General Relativity, Santa Cruz, CA, USA, 22–28 June 1986; American Mathematical Society: Providence, RI, USA, 1988; pp. 237–262. [Google Scholar]
- Brendle, S. Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 2005, 69, 217–278. [Google Scholar] [CrossRef]
- Brendle, S. Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math. 2007, 170, 541–576. [Google Scholar] [CrossRef]
- Stepanov, S.; Tsyganok, I. The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons. Balkan J. Geom. Appl. 2019, 24, 113–121. [Google Scholar]
- Stepanov, S.; Shandra, I. New characteristics of infinitesimal isometry and Ricci solitons. Math. Notes 2012, 92, 422–425. [Google Scholar] [CrossRef]
- Barbosa, E.; Ribeiro, E. On conformal solutions of the Yamabe flow. Arch. Der Math. 2013, 101, 79–89. [Google Scholar] [CrossRef]
- Yamabe, H. On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 1960, 12, 21–37. [Google Scholar]
- Egorov, I.P. Automorphisms in generalized spaces. J. Sov. Math. 1980, 14, 1260–1287. [Google Scholar] [CrossRef]
- Mikeš, J. Differential Geometry of Special Mappings; Palacký University Olomouc Print: Olomouc, Czech Republic, 2019. [Google Scholar]
- Deshmukh, S.; Alsodais, H.; Bin Turki, N. Some results on Ricci almost solitons. Symmetry 2021, 13, 430. [Google Scholar] [CrossRef]
- Daskalopoulos, P.; Sesum, N. The classification of locally conformally flat Yamabe solitons. Adv. Math. 2013, 240, 346–369. [Google Scholar] [CrossRef]
- Deshmukh, S.; Alsodais, H. A note on Ricci solitons. Symmetry 2020, 12, 289. [Google Scholar] [CrossRef] [Green Version]
- Turki, N.B.; Chen, B.Y.; Deshmukh, S. Conformal vector fields and Yamabe solitons. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950053. [Google Scholar] [CrossRef]
- Suh, J.Y.; De, U.C. Yamabe solitons and Ricci solitons on almost co-Kähler manifolds. Can. Math. Bull. 2019, 62, 653–661. [Google Scholar] [CrossRef]
- Blaga, A.M.; Ishan, A.A.; Deshmukh, S. A note on solitons with generalized geodesic vector field. Symmetry 2021, 13, 1104. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Deshmukh, S. Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediterr. J. Math. 2018, 15, 194. [Google Scholar] [CrossRef] [Green Version]
- Burchard, A.; Mccan, R.J.; Smith, A. Explicit Yamabe flow of an asymmetric cigar. Methods Appl. Anal. 2008, 15, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Seko, T.; Maeta, S. Classification of almost Yamabe solitons in Euclidean spaces. J. Geom. Phys. 2019, 136, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Tokura, W.; Adriano, L.; Batista, E.; Bezerra, A.C. Immersion of gradient almost Yamabe solitons into warped product manifolds. arXiv 2020, arXiv:2010.03995v1. [Google Scholar]
- Deshmukh, S.; Alsolamy, F. A note on conformal vector fields on a Riemannian manifold. Colloq. Math. 2014, 136, 65–73. [Google Scholar] [CrossRef]
- Chow, B. The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl. Math. 1992, 45, 1003–1014. [Google Scholar] [CrossRef]
- Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type, 2nd ed.; World Scientific: Hackensack, NJ, USA, 2015. [Google Scholar]
- Liberman, E.; Teicher, M. Homeomorphic arrangements of smooth manifolds. Symmetry 2021, 13, 981. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, L. Properties of non-compact Yamabe solitons. Ann. Glob. Anal. Geom. 2011, 40, 379–387. [Google Scholar] [CrossRef]
- Deshmukh, S.; Turki, N. A note on φ-analytic conformal vector fields. Anal. Math. Phys. 2019, 9, 181–195. [Google Scholar] [CrossRef]
- Hsu, S.Y. A note on compact gradient Yamabe solitons. J. Math. Anal. Appl. 2012, 388, 725–726. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhaldi, A.H.; Laurian-Ioan, P.; Abolarinwa, A.; Ali, A. Characterization of Almost Yamabe Solitons and Gradient Almost Yamabe Solitons with Conformal Vector Fields. Symmetry 2021, 13, 2362. https://doi.org/10.3390/sym13122362
Alkhaldi AH, Laurian-Ioan P, Abolarinwa A, Ali A. Characterization of Almost Yamabe Solitons and Gradient Almost Yamabe Solitons with Conformal Vector Fields. Symmetry. 2021; 13(12):2362. https://doi.org/10.3390/sym13122362
Chicago/Turabian StyleAlkhaldi, Ali H., Pişcoran Laurian-Ioan, Abimbola Abolarinwa, and Akram Ali. 2021. "Characterization of Almost Yamabe Solitons and Gradient Almost Yamabe Solitons with Conformal Vector Fields" Symmetry 13, no. 12: 2362. https://doi.org/10.3390/sym13122362
APA StyleAlkhaldi, A. H., Laurian-Ioan, P., Abolarinwa, A., & Ali, A. (2021). Characterization of Almost Yamabe Solitons and Gradient Almost Yamabe Solitons with Conformal Vector Fields. Symmetry, 13(12), 2362. https://doi.org/10.3390/sym13122362