Automatic Retrieval of Shoeprints Using Modified Multi-Block Local Binary Pattern
Abstract
:1. Introduction
- Retrieving shoeprints using the Ojala’s Local Binary Pattern (LBP) [9] for the first time.
- A novel Modified Multi-Block Local Binary Pattern (MMB-LBP) method is proposed for shoeprint retrieval.
- A detailed comparison of the proposed method with a number of related methods, with and without the presence of rotation, salt and pepper noise, and Gaussian white noise distortions.
2. Related Works
3. Local Binary Pattern
A Multi-Block Local Binary Pattern
4. The Proposed Technique for Retrieval Shoeprints
4.1. A Preprocessing
4.2. Noise Elimination
4.3. Rotating Image
4.4. Scale Change
4.5. Extracting Features
4.6. Modified Multi-Block Local Binary Pattern
4.7. A Shoeprint Image Matching
5. Results and Discussion
6. Evaluation of the Performance of the LBP, MB-LBP, and MMB-LBP Methods
6.1. Performance of LBP versus MB-LBP
6.2. Performance of the MB-LBP versus the MMB-LBP
6.3. A Comparison with Patil and Almaadeed
6.4. Evaluations under Distortions and Noises
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Locard, E. The analysis of dust traces. Part I, II and III. Am. J. Police Sci. 1930, 1, 276–298, 401–418, 496–514. [Google Scholar] [CrossRef]
- Robertson, J.R. Forensic Examination of Hair; CRC Press: London, UK, 2002. [Google Scholar]
- Kaur, R.; Mazumdar, S.G. Fingerprint Based Gender Identification using frequency domain analysis. Int. J. Adv. Eng. Technol. 2012, 3, 295–299. [Google Scholar]
- Buckleton, J.S.; Bright, J.-A.; Taylor, D. Forensic DNA Evidence Interpretation; CRC Press: London, UK, 2016. [Google Scholar]
- Robertson, B.; Vignaux, G.A.; Berger, C.E. Interpreting Evidence: Evaluating Forensic Science in the Courtroom; John Wiley & Sons: West Sussex, UK, 2016. [Google Scholar]
- Bodziak, W.J. Forensic Footwear Evidence; CRC Press: London, UK, 2017. [Google Scholar]
- Girod, A. Shoeprints: Coherent exploitation and management. Presented at the European Meeting for Shoeprint Toolmark Examiners, The Hague, The Netherlands, 23 April 1997. [Google Scholar]
- Bouridane, A. Shoemark recognition for forensic science: An emerging technology. In Imaging for Forensics and Security; Springer: Boston, MA, USA, 2009; pp. 143–164. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Rankin, B. Footwear marks—A step by step review. Forensic Sci. Soc. Newsl. April 1998, 3. [Google Scholar]
- Mikkonen, S.; Astikainen, T. Databased Classification System for Shoe Sole Patterns—Identification of Partial Footwear Impression Found at a Scene of Crime. J. Forensic Sci. 1994, 39, 1227–1236. [Google Scholar] [CrossRef]
- Ashley, W. What shoe was that? The use of computerised image database to assist in identification. Forensic Sci. Int. 1996, 82, 7–20. [Google Scholar] [CrossRef]
- Mikkonen, S.; Suominen, V.; Heinonen, P. Use of footwear impressions in crime scene investigations assisted by computerised footwear collection system. Forensic Sci. Int. 1996, 82, 67–79. [Google Scholar] [CrossRef]
- Birkett, J. Scientific scene linking. J. Forensic Sci. Soc. 1989, 29, 271–284. [Google Scholar] [CrossRef]
- Alexander, A.; Bouridane, A.; Crookes, D. Automatic classification and recognition of shoeprints. In Proceedings of the Seventh International Conference an Image Processing and Its Applications (Conf. Publ. No. 465), Manchester, UK, 1999; Volume 2, pp. 638–641. [Google Scholar]
- Bouridane, A.; Alexander, A.; Nibouche, M.; Crookes, D. Application of fractals to the detection and classification of shoeprints. In Proceedings of the 2000 International Conference on Image Processing (Cat. No.00CH37101), Vancouver, BC, Canada, 10–13 September 2000; Volume 1, pp. 474–477. [Google Scholar]
- De Chazal, P.; Flynn, J.; Reilly, R.B. Automated processing of shoeprint images based on the Fourier transform for use in forensic science. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 341–350. [Google Scholar] [CrossRef]
- Zhang, L.; Allinson, N. Automatic shoeprint retrieval system for use in forensic investigations. In Proceedings of the 2005 U.K. Workshop on Computational Intelligence (UKCI2005), London, UK, 5–7 September 2005; pp. 137–142. [Google Scholar]
- Pavlou, M.; Allinson, N.M. Automatic extraction and classification of footwear patterns. In Intelligent Data Engineering and Automated Learning–IDEAL; Springer: Berlin/Heidelberg, Germany, 2006; pp. 721–728. [Google Scholar]
- Crookes, D.; Bouridane, A.; Su, H.; Gueham, M. Following the footsteps of others: Techniques for automatic shoeprint classification. In Proceedings of the Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), Edinburgh, UK, 5–8 August 2007; pp. 67–74. [Google Scholar]
- Su, H.; Crookes, D.; Bouridane, A.; Gueham, M. Local image features for shoeprint image retrieval. In Proceedings of the BMVC, Warwick, UK, 10–13 September 2007. [Google Scholar]
- Gueham, M.; Bouridane, A.; Crookes, D. Automatic recognition of partial shoeprints based on phase-only correlation. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16–19 September 2007; pp. IV-441–IV-444. [Google Scholar]
- Gueham, M.; Bouridane, A.; Crookes, D. Automatic Classification of Partial Shoeprints Using Advanced Correlation Filters for use in Forensic Science. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4. [Google Scholar]
- Algarni, G.; Hamiane, M. A novel technique for automatic shoeprint image retrieval. Forensic Sci. Int. 2008, 181, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Gueham, M.; Bouridane, A.; Crookes, D.; Nibouche, O. Automatic recognition of shoeprints using Fourier-Mellin transform. In Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems, Noordwijk, The Netherlands, 22–25 June 2008; pp. 487–491. [Google Scholar]
- Pei, W.; Zhu, Y.-Y.; Na, Y.-N.; He, X.-G. Multiscale gabor wavelet for shoeprint image retrieval. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; pp. 1–5. [Google Scholar]
- Pavlou, M.; Allinson, N.M. Automated encoding of footwear patterns for fast indexing. Image Vis. Comput. 2009, 27, 402–409. [Google Scholar] [CrossRef]
- Jing, M.-Q.; Ho, W.-J.; Chen, L.-H. A novel method for shoeprints recognition and classification. In Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, Hebei, China, 12–15 July 2009; Volume 5, pp. 2846–2851. [Google Scholar]
- Nibouche, O.; Bouridane, A.; Gueham, M.; Laadjel, M. Rotation invariant matching of partial shoeprints. In Proceedings of the 2009 13th International Machine Vision and Image Processing Conference, Dublin, Ireland, 2–4 September 2009; pp. 94–98. [Google Scholar]
- Patil, P.M.; Kulkarni, J.V. Rotation and intensity invariant shoeprint matching using Gabor transform with application to forensic science. Pattern Recognit. 2009, 42, 1308–1317. [Google Scholar] [CrossRef]
- Li, Z.; Wei, C.; Li, Y.; Sun, T. Research of shoeprint image stream retrival algorithm with scale-invariance feature transform. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 5488–5491. [Google Scholar]
- Hasegawa, M.; Tabbone, S. A local adaptation of the histogram radon transform descriptor: An application to a shoe print dataset. In Structural, Syntactic, and Statistical Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 675–683. [Google Scholar]
- Wei, C.-H.; Li, Y.; Gwo, C.-Y. The Use of Scale-Invariance Feature Transform Approach to Recognize and Retrieve Incomplete Shoeprints. J. Forensic Sci. 2013, 58, 625–630. [Google Scholar] [CrossRef]
- Wei, C.-H.; Gwo, C.-Y. Alignment of core point for shoeprint analysis and retrieval. In Proceedings of the 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 26–28 April 2014; pp. 1069–1072. [Google Scholar]
- Almaadeed, S.; Bouridane, A.; Crookes, D.; Nibouche, O. Partial shoeprint retrieval using multiple point-of-interest detectors and SIFT descriptors. Integr. Comput. Eng. 2015, 22, 41–58. [Google Scholar] [CrossRef]
- Dardi, F.; Cervelli, F.; Carrato, S. An automatic footwear retrieval system for shoe marks from real crime scenes. In Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis, Salzburg, Austria, 16–18 September 2009; pp. 668–672. [Google Scholar]
- Dardi, F.; Cervelli, F.; Carrato, S. A Texture Based Shoe Retrieval System for Shoe Marks of Real Crime Scenes. In Proceedings of the International Conference on Image Analysis and Processing, Vietri sul Mare, Italy, 8–11 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 384–393. [Google Scholar]
- Dardi, F.; Cervelli, F.; Carrato, S. A combined approach for footwear retrieval of crime scene shoe marks. In Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009), London, UK, 3 December 2009; pp. 1–6. [Google Scholar]
- Cervelli, F.; Dardi, F.; Carrato, S. A translational and rotational invariant descriptor for automatic footwear retrieval of real cases shoe marks. In Proceedings of the 18th European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010; pp. 1665–1669. [Google Scholar]
- Tang, Y.; Srihari, S.N.; Kasiviswanathan, H.; Corso, J.J. Footwear print retrieval system for real crime scene marks. In Computational Forensics; IWCF 2010, Lecture Notes in Computer Science; Sako, H., Franke, K.Y., Saitoh, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6540. [Google Scholar]
- Tang, Y.; Srihari, S.N.; Kasiviswanathan, H. Similarity and Clustering of Footwear Prints. In Proceedings of the 2010 IEEE International Conference on Granular Computing, San Jose, CA, USA, 14–16 August 2010; pp. 459–464. [Google Scholar]
- Tang, Y.; Kasiviswanathan, H.; Srihari, S.N. An efficient clustering-based retrieval framework for real crime scene footwear marks. Int. J. Granul. Comput. Rough Sets Intell. Syst. 2012, 2, 327. [Google Scholar] [CrossRef]
- Li, X.; Wu, M.; Shi, Z. The Retrieval of shoeprint images based on the integral histogram of the Gabor transform domain. In Proceedings of the International Conference on Intelligent Information Processing, Hangzhou, China, 3–6 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 249–258. [Google Scholar]
- Kong, X.; Yang, C.; Zheng, F. A Novel Method for Shoeprint Recognition in Crime Scenes. In Biometric Recognition; Springer: Cham, Switzerland, 2014; pp. 498–505. [Google Scholar]
- Kortylewski, A.; Albrecht, T.; Vetter, T. Unsupervised footwear impression analysis and retrieval from crime scene data. In Lecture Notes in Computer Science, Proceedings of the 12th Asian Conference on Computer Vision (ACCV 2014), Singapore, 1–5 November 2014; Jawahar, C., Shan, S., Eds.; Springer: Cham, Switzerland, 2014; Volume 9008. [Google Scholar]
- Wang, X.; Sun, H.; Yu, Q.; Zhang, C. Automatic Shoeprint Retrieval Algorithm for Real Crime Scenes. In Proceedings of the 12th Asian Conference on Computer Vision (ACCV 2014), Singapore, 1–5 November 2014; Springer: Cham, Switzerland, 2014; pp. 399–413. [Google Scholar]
- Kortylewski, A.; Vetter, T.; Wilson, R.C.; Hancock, E.R.; Smith, W.A.P.; Pears, N.E.; Bors, A.G. Probabilistic Compositional Active Basis Models for Robust Pattern Recognition. In Proceedings of the British Machine Vision Conference 2016, York, UK, 19–22 September 2016; BMVA Press: York, UK, 2016; pp. 30.1–30.12. [Google Scholar]
- Wang, X.; Zhang, C.; Wu, Y.; Shu, Y. A manifold ranking based method using hybrid features for crime scene shoeprint retrieval. Multimed. Tools Appl. 2016, 76, 21629–21649. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Nankabirwa, N.L.; Zhang, T. LOSGSR: Learned Opinion Score Guided Shoeprint Retrieval. IEEE Access 2019, 7, 55073–55089. [Google Scholar] [CrossRef]
- Alizadeh, S.; Kose, C. Automatic retrieval of shoeprint images using blocked sparse representation. Forensic Sci. Int. 2017, 277, 103–114. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, X.; Liu, N.; Morgachev, S.; Li, D. Robust Shoeprint Retrieval Method Based on Local-to-Global Feature Matching for Real Crime Scenes. J. Forensic Sci. 2019, 64, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, X.; Zhang, T. Crime Scene Shoeprint Retrieval Using Hybrid Features and Neighboring Images. Information 2019, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Geradts, Z.; Keijzer, J. The image-database REBEZO for shoeprints with developments on automatic classification of shoe outsole designs. Forensic Sci. Int. 1996, 82, 21–31. [Google Scholar] [CrossRef]
- Liao, S.; Zhu, X.; Lei, Z.; Zhang, L.; Li, S.Z. Learning multi-scale block local binary patterns for face recognition. In Advances in Biometrics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 828–837. [Google Scholar]
- Zhang, L.; Chu, R.; Xiang, S.; Liao, S.; Li, S.Z. Face detection based on multi-block LBP representation. In Advances in Biometrics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 11–18. [Google Scholar]
- Nguyen, D.T.; Cho, S.R.; Park, K.R. Human age estimation based on multi-level local binary pattern and regression method. In Future Information Technology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 433–438. [Google Scholar]
- Yüceer, C.; Oflazer, K. A rotation, scaling and translation invariant pattern classification system. Pattern Recognit. 1993, 26, 687–710. [Google Scholar] [CrossRef] [Green Version]
DB Size | Features | Reviewed Distortions | Reported Result | Reference | |
---|---|---|---|---|---|
Shoe-prints (obtained in controlled conditions) | 32 | Fractal | R, T | - | [15] |
145 | Fractal | R, T | 88% @ 1% | [16] | |
475 | PSD | R, T | 87% @ 5% | [17] | |
512 | DFT | S, N, R, T | 97.7% @ 4% | [18] | |
368 | MSER + SIFT | R, T | 85% @ 1 | [19] | |
500 | Harris + SIFT | S, R, N, P | 100% @ 1 | [20] | |
500 | Harris + SIFT | S, N, R, P | 87% @ 1 | [21] | |
100 | POC | P, N | 93% @ 1 | [22] | |
100 | ACF | P, N, R | 95.68% @ 1 | [23] | |
500 | HM | N, R | 99.4% @ 1 | [24] | |
500 | FMT | P, S, N, R, T | 99% @ 10 | [25] | |
6000 | GW | P, N | 61.7% @ 5 | [26] | |
374 | MSER + SIFT | - | 87% @ 1 | [27] | |
300 | FT | R, T | - | [28] | |
300 | SIFT + RANSAC | P, N, R | 90% @ 1 | [29] | |
1400 | GT | R, P, N | 91% @ 1 | [30] | |
430 | SIFT | P, N | 90% @ 2% | [31] | |
512 | HRT | - | - | [32] | |
430 | SIFT | P, N, R | 90% @ 5% | [33] | |
1230 | ZM | - | 0.726 in first for Zarnik moments | [34] | |
300 | Harris + Hessian + SIFT | S, R, P, N | 99.33% @ 1 | [35] | |
Shoe marks (recovered from crime scenes) | 87 | Texture | N | 49% % 1 | [36] |
87 | Texture | S, R, T | 73% @ 10 | [37] | |
87 | PSDM | N | 100% @ 6 | [38] | |
75 | Texture | T, R, N | 100% @ 1 | [39] | |
2660 | ARG | S, R, T, P | 71% @ 1% | [40] | |
1000 | ARG | S, R, T, N | 70% @ 1% | [41] | |
2660 | ARG | S, T, R, N | 74% @ 10% | [42] | |
2000 | IHGT | - | - | [43] | |
1225 | GF + ZM | - | 53.40% @ 10 | [44] | |
1175 | PP | T, N | 27.1% @ 2% | [45] | |
210,000 | WFT | T, R, S | 90.87% @ 2% | [46] | |
1175 | PCABM | - | 71% @ 20% | [47] | |
10,096 | HW + FMT + PSD | - | 93.5% 2% | [48] | |
1175 | LOSGSR | - | 96.6% 2% | [49] | |
1000 | BSR | R, S | 99.47% 1 | [50] | |
536 | DBN + SPM | - | 65.67% 10 | [51] | |
10096 | NSE | - | 92.5% 2% | [52] |
1 | 2 | 3 | 4 | 1 | 2 | 3 | |||
1 | 2 | 4 | 4 | 2 | 1 | 2 | 4 | 2 | |
2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 2 | |
3 | 2 | 4 | 4 | 2 | 3 | 2 | 4 | 2 | |
4 | 2 | 4 | 4 | 2 | 4 | 2 | 3 | 2 | |
5 | 2 | 3 | 3 | 2 | 5 | 1 | 3 | 1 | |
6 | 2 | 3 | 3 | 2 | 6 | 2 | 4 | 2 | |
7 | 2 | 4 | 4 | 2 | 7 | 2 | 4 | 2 | |
8 | 2 | 4 | 4 | 2 | |||||
A | B |
Method | Type of Shoeprint | Cumulative Match Score | ||||
---|---|---|---|---|---|---|
First Rank | Second Rank | Third Rank | Fourth Rank | Fifth Rank | ||
MMB-LBP | Complete | 97.63 | 99.21 | 99.61 | 99.87 | 100 |
Toe | 96.05 | 97.76 | 98.55 | 98.55 | 98.95 | |
Heel | 91.18 | 94.47 | 95.79 | 96.32 | 97.50 | |
Almaadeed | Complete | 83.29 | 86.58 | 87.63 | 88.16 | 89.21 |
Toe | 74.08 | 76.05 | 76.84 | 77.63 | 78.16 | |
Heel | 72.37 | 74.08 | 75.00 | 76.32 | 77.11 | |
Patil | Complete | 63.95 | 68.95 | 70.66 | 72.50 | 73.95 |
Toe | 58.68 | 65.13 | 69.21 | 71.84 | 73.16 | |
Heel | 46.45 | 52.90 | 55.79 | 58.68 | 61.58 |
Type of Shoeprint | Cumulative Match Score | |||||
---|---|---|---|---|---|---|
First Rank | Second Rank | Third Rank | Fourth Rank | Fifth Rank | Sixth Rank | |
Complete | 81.58 | 85.40 | 86.97 | 88.03 | 89.21 | 94.08 |
Toe | 69.47 | 75.92 | 79.08 | 81.45 | 82.76 | 91.32 |
Heel | 67.63 | 74.87 | 77.76 | 80.40 | 82.50 | 91.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alizadeh, S.; Jond, H.B.; Nabiyev, V.V.; Kose, C. Automatic Retrieval of Shoeprints Using Modified Multi-Block Local Binary Pattern. Symmetry 2021, 13, 296. https://doi.org/10.3390/sym13020296
Alizadeh S, Jond HB, Nabiyev VV, Kose C. Automatic Retrieval of Shoeprints Using Modified Multi-Block Local Binary Pattern. Symmetry. 2021; 13(2):296. https://doi.org/10.3390/sym13020296
Chicago/Turabian StyleAlizadeh, Sayyad, Hossein B. Jond, Vasif V. Nabiyev, and Cemal Kose. 2021. "Automatic Retrieval of Shoeprints Using Modified Multi-Block Local Binary Pattern" Symmetry 13, no. 2: 296. https://doi.org/10.3390/sym13020296
APA StyleAlizadeh, S., Jond, H. B., Nabiyev, V. V., & Kose, C. (2021). Automatic Retrieval of Shoeprints Using Modified Multi-Block Local Binary Pattern. Symmetry, 13(2), 296. https://doi.org/10.3390/sym13020296