Research of Trajectory Optimization Approaches in Synthesized Optimal Control
Abstract
:1. Introduction
2. Problem of Optimal Movement on Trajectory Determined by a Set of Points
3. Synthesized Optimal Control
4. Numerical Methods
4.1. Methods for the Control Synthesis Problem
4.2. Methods for the Optimal Control Problem
5. Computational Example
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pavlov, I. Experimental Psychology and Other Essays; Philosophical Library: New York, NY, USA, 1957. [Google Scholar]
- Diveev, A.; Shmalko, E.; Serebrenny, V.; Zentay, P. Fundamentals of Synthesized Optimal Control. Mathematics 2021, 9, 21. [Google Scholar] [CrossRef]
- Liu, P.; Yu, H.; Cang, S. Trajectory Synthesis and Optimization of an Underactuated Microrobotic System with Dynamic Constraints and Couplings. Int. J. Control. Autom. Syst. 2018, 16, 2373–2383. [Google Scholar] [CrossRef]
- Matschek, J.; Bäthge, T.; Faulwasser, T.; Findeisen, R. Nonlinear predictive control for trajectory tracking and path following: An introduction and perspective. In Handbook of Model Predictive Control; Birkhäuser: Cham, Switzerland, 2019; pp. 169–198. [Google Scholar]
- Chen, H.; Mitra, S. Synthesis and verification of motor-transmission shift controller for electric vehicles. In Proceedings of the 2014 ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2014, Art. No. 6843708, Berlin, Germany, 14–17 April 2014; pp. 25–35. [Google Scholar]
- Merkulov, V.I. Algorithm synthesis of the trajectory control of a mobile bistatic system of command radio control. Radiotekhnika 1998, 4, 99–101. [Google Scholar]
- Aguilar, C.O.; Krener, A.J. Numerical Solutions to the Bellman Equation of Optimal Control. J. Optim. Theory Appl. 2014, 160, 527–552. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, S.; Zhang, H. A New Robust Adaptive Neural Network Backstepping Control for Single Machine In finite Power System With TCSC. IEEE/CAA J. Autom. Sin. 2020, 7, 48–56. [Google Scholar]
- Kolesnikov, A.A.; Kolesnikov, A.A.; Kuz’menko, A.A. Backstepping and ADAR Method in the Problems of Synthesis of the Nonlinear Control Systems. Mekhatronika Avtom. Upr. 2016, 17, 435–445. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Nersesov, S.G.; Haddad, W.M. On the Stability and Control of Nonlinear Dynamical Systems via Vector Lyapunov Functions. IEEE Trans. Autom. Contr. 2006, 51, 203–215. [Google Scholar] [CrossRef]
- Åström, K.; Hägglund, T. PID Controllers: Theory, Design and Tuning; Instrument Society of America: Research Triangle Park, NC, USA, 1995. [Google Scholar]
- Yang, J.; Lu, W.; Liu, W. PID Controller Based on the Artificial Neural Network. In Advances in Neural Networks, Lecture Notes in Computer Science; Yin, F.L., Wang, J., Guo, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3174. [Google Scholar]
- Wang, L.-X. Stable Adaptive Fuzzy Control of Nonlinear Systems. IEEE Trans. Fuzzy Syst. 1993, 1, 146–155. [Google Scholar] [CrossRef]
- Freitas, A. Data Mining and Knowledge Discovery with Evolutionary Algorightms; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Winkler, S. Evolutionary System Identification—Modern Concepts and Practical Applications. In Reihe C—Technik und Naturwissenschaften; Trauner: Linz, Austria, 2008. [Google Scholar]
- Alibekov, E.; Kubalık, J.; Babushka, R. Symbolic method for deriving policy in reinforcement learning. In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 2789–2795. [Google Scholar]
- Derner, E.; Kubalík, J.; Babushka, R. Reinforcement Learning with Symbolic Input–Output Models. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3004–3009. [Google Scholar]
- Diveev, A.I.; Shmalko, E.Y. Automatic Synthesis of Control for Multi-Agent Systems with Dynamic Constraints. IFAC-PapersOnLine 2015, 48, 384–389. [Google Scholar] [CrossRef]
- Diveev, A.; Shmalko, E. Machine-made Synthesis of Stabilization System by Modified Cartesian Genetic Programming. IEEE Trans. Cybern. 2020. in print. [Google Scholar]
- Duriez, T.; Brunton, S.L.; Noack, B.R. Machine Learning Control—Taming Nonlinear Dynamics and Turbulence; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Diveev, A.; Konstantinov, S.; Shmalko, E.; Dong, G. Machine Learning Control Based on Approximation of Optimal Trajectories. Mathematics 2021, 9, 265. [Google Scholar] [CrossRef]
- Upadhyay, D.; Schaal, C. Optimizing the driving trajectories for guided ultrasonic wave excitation using iterative learning control. Mech. Syst. Signal Process. 2020, 144, 106876. [Google Scholar] [CrossRef]
- Persio, L.D.; Garbelli, M. Deep Learning and Mean-Field Games: A Stochastic Optimal Control Perspective. Symmetry 2021, 13, 14. [Google Scholar] [CrossRef]
- He, W.; Huang, Y.; Fu, Z.; Lin, Y. ICONet: A Lightweight Network with Greater Environmental Adaptivity. Symmetry 2020, 12, 2119. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Martens, J. Deep learning via hessian-free optimization. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Isreal, 21–24 June 2010. [Google Scholar]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgan Kaufman—Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Diveev, A.; Shmalko, E. Optimal Feedback Control through Numerical Synthesis of Stabilization System. In Proceedings of the 7th International Conference on Control, Decision and Information Technologies, CoDIT 2020, Prague, Czech Republic, 29 June–2 July 2020; pp. 112–117. [Google Scholar]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA; London, UK, 1992. [Google Scholar]
- Yang, G.; Jeong, Y.; Min, K.; Lee, J.-W.; Lee, B. Applying Genetic Programming with Similar Bug Fix Information to Automatic Fault Repair. Symmetry 2018, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Dracopoulos, D.C.; Kent, S. Genetic programming for prediction and control. Neural Comput. Appl. 1997, 6, 214–228. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.F. Cartesian Genetic Programming; Springer: Berlin/Heidelberg, Germany, 2011; 342p, ISBN 978-3-642-17310-3. [Google Scholar]
- Diveev, A.I.; Shmalko, E.Y. Self-adjusting control for multi robot team by the network operator method. In Proceedings of the 2015 European Control Conference, Linz, Austria, 15–17 July 2015; pp. 709–714. [Google Scholar]
- Diveev, A.I.; Shmalko, E.Y. Complete binary variational analytic programming for synthesis of control at dynamic constraints. In Proceedings of the ITM Web of Conferences, Moscow, Russia, 14–15 February 2017; Volume 10. [Google Scholar]
- Diveev, A. Small Variations of Basic Solution Method for Non-numerical Optimization. IFAC-PapersOnLine 2015, 48, 28–33. [Google Scholar] [CrossRef]
- Andrzej, O.; Stanislaw, K. Evolutionary Algorithms for Global Optimization. In Global Optimization. Nonconvex Optimization and Its Applications; Pintér, J.D., Ed.; Springer: Boston, MA, USA, 2006; Volume 85. [Google Scholar]
- Diveev, A.I.; Konstantinov, S.V. Study of the practical convergence of evolutionary algorithms for the optimal program control of a wheeled robot. J. Comput. Syst. Sci. Int. 2018, 57, 561–580. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms, Numerical Optimization, and Constraints. In Proceedings of the Sixth International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 15–19 July 1995; pp. 151–158. [Google Scholar]
- Homaifar, A.; Qi, C.; Lai, S. Constrained optimization via genetic algorithms. Simulation 1994, 62, 242–254. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks IV, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diveev, A.; Shmalko, E. Research of Trajectory Optimization Approaches in Synthesized Optimal Control. Symmetry 2021, 13, 336. https://doi.org/10.3390/sym13020336
Diveev A, Shmalko E. Research of Trajectory Optimization Approaches in Synthesized Optimal Control. Symmetry. 2021; 13(2):336. https://doi.org/10.3390/sym13020336
Chicago/Turabian StyleDiveev, Askhat, and Elizaveta Shmalko. 2021. "Research of Trajectory Optimization Approaches in Synthesized Optimal Control" Symmetry 13, no. 2: 336. https://doi.org/10.3390/sym13020336
APA StyleDiveev, A., & Shmalko, E. (2021). Research of Trajectory Optimization Approaches in Synthesized Optimal Control. Symmetry, 13(2), 336. https://doi.org/10.3390/sym13020336