Off-Shell Noether Currents and Potentials for First-Order General Relativity
Abstract
:1. Introduction
2. Palatini Lagrangian
2.1. Off-Shell Current and Potential for Diffeomorphisms
2.2. Off-Shell Current and Potential for Local or Transformations
2.3. Off-Shell Current for ‘Improved Diffeomorphisms’
2.4. Off-Shell Current for the ‘Generalization of Local Translations’
3. Holst Lagrangian
3.1. Off-Shell Current and Potential for Diffeomorphisms
3.2. Off-Shell Current and Potential for Local or Transformations
3.3. Off-Shell Current for ‘Improved Diffeomorphisms’
3.4. Off-Shell Current for the ‘Generalization of Local Translations’
4. Off-Shell Noether Charges
5. Killing Vector Fields
5.1. Palatini Lagrangian
5.2. Holst Lagrangian
6. Half Off-Shell Case
7. Examples
7.1. Static Spherically Symmetric Spacetimes
7.1.1. Palatini Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields
- (i)
- (ii)
- (iii)
- (iv)
Half Off-Shell Potentials and Currents for Local Transformations Induced by Killing Vector Fields
7.1.2. Holst Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields
Half Off-Shell Potentials and Currents for Local Transformations Induced by the Killing Vector Fields
- (i)
- For the gauge parameter , the potential (62) and its current acquire the form
- (ii)
- For the gauge parameter , the potential (62) and its current becomeThis is so because both and vanish.
- (iii)
- (iv)
Half Off-Shell Potentials and Currents (129) and (130)
- (i)
- ForNotice that is given by the first term in the last equality in (165).
- (ii)
- ForNotice that is given by the first and second terms in the last equality in (167).
- (iii)
- ForNotice that is given by the first three terms in the last equality in (169).
- (iv)
- ForNotice that is given by the first three terms in the last equality in (171).
7.2. Friedmann–Lemaitre–Robertson–Walker Cosmology
7.2.1. Palatini Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
Half Off-Shell Potentials and Currents for Local Transformations Induced by the Killing Vector Fields
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- For the gauge parameter , the potential (21) and its current becomeThis is so because vanishes.
7.2.2. Holst Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
Half Off-Shell Potentials and Currents for Local Transformations Induced by the Killing Vector Fields
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- For the gauge parameter , the potential (62) and its current becomeThis is so because vanishes.
Half Off-Shell Potentials and Currents (129) and (130)
- (i)
- ForNotice that is given by the first five terms in the last equality in (223).
- (ii)
- ForNotice that is given by the first five terms in the last equality in (225).
- (iii)
- ForNotice that is given by the first three terms of the last equality in (227).
- (iv)
- ForNotice that is given by the first five terms in the last equality in (229).
- (v)
- ForNotice that is given by the first five terms in the last equality in (231).
- (vi)
- ForNotice that is given by the first three terms in the last equality in (233).
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noether, E. Invariante Variations probleme. Nachr. König. Ges. Wiss. Göttingen Math-Phys. Kl. 1918, 1918, 235. [Google Scholar]
- Bessel-Hagen, E. Über die Erhaltungssätze der Elektrodynamik. Math. Ann. 1921, 84, 258. [Google Scholar] [CrossRef]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186. [Google Scholar] [CrossRef] [Green Version]
- Iyer, V.; Wald, R.M. Some properties of the Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 1994, 50, 846. [Google Scholar] [CrossRef] [Green Version]
- Julia, B.; Silva, S. Currents and superpotentials in classical gauge-invariant theories: I. Local results with applications to perfect fluids and general relativity. Class. Quantum Grav. 1998, 15, 2173. [Google Scholar] [CrossRef]
- Fatibene, L.; Ferraris, M.; Francaviglia, M.; Raiteri, M. The Entropy of Black Holes via Noether’s Theorem; Recent Developments in General Relativity; Casciaro, B., Fortunato, D., Francaviglia, M., Masiello, A., Eds.; Springer: Milano, Italy, 2000; p. 105. [Google Scholar] [CrossRef]
- Wald, R.M.; Zoupas, A. General definition of “conserved quantities” in general relativity and other theories of gravity. Phys. Rev. D 2000, 61, 084027. [Google Scholar] [CrossRef] [Green Version]
- Fatibene, L.; Ferraris, M.; Francaviglia, M.; Raiteri, M. Nöther charges, Brown–York quasilocal energy, and related topics. J. Math. Phys. 2001, 42, 1173. [Google Scholar] [CrossRef]
- Barnich, G.; Brandt, F. Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 2002, 633, 3. [Google Scholar] [CrossRef] [Green Version]
- Barnich, G. Boundary charges in gauge theories: Using Stokes theorem in the bulk. Class. Quantum Grav. 2003, 20, 3685. [Google Scholar] [CrossRef] [Green Version]
- Deser, S. Energy in gravitation and Noether’s theorems. J. Phys. A 2019, 52, 381001. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Kulkarni, S.; Yi, S.H. Quasilocal Conserved Charges in a Covariant Theory of Gravity. Phys. Rev. Lett. 2013, 111, 081101, Erratum in 2014, 112, 079902. doi:10.1103/PhysRevLett.112.079902. [Google Scholar] [CrossRef] [Green Version]
- Adami, H.; Setare, M. Quasi-local conserved charges in Lorentz—Diffeomorphism covariant theory of gravity. Eur. Phys. J. C 2016, 76, 187. [Google Scholar] [CrossRef] [Green Version]
- Adami, H.; Setare, M.R.; Çağrı Şişman, T.; Tekin, B. Conserved charges in extended theories of gravity. Phys. Rep. 2019, 834–835, 1. [Google Scholar] [CrossRef] [Green Version]
- Holst, S. Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D 1996, 53, 5966. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Perez, A. The Spin-Foam Approach to Quantum Gravity. Living Rev. Rel. 2013, 16, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Barbero, J.F. Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 1995, 51, 5507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immirzi, G. Real and complex connections for canonical gravity. Class. Quantum Grav. 1997, 14, L177. [Google Scholar] [CrossRef] [Green Version]
- Freidel, L.; Minic, D.; Takeuchi, T. Quantum gravity, torsion, parity violation, and all that. Phys. Rev. D 2005, 7, 104002. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, S. Fermions in the Ashtekar-Barbero connection formalism for arbitrary values of the Immirzi parameter. Phys. Rev. D 2006, 73, 084016. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.; Rovelli, C. Physical effects of the Immirzi parameter in loop quantum gravity. Phys. Rev. D 2006, 73, 044013. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Das, R. Canonical gravity with fermions. Phys. Rev. D 2008, 78, 064009. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, 442, 593. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Lewandowski, J. Quantum theory of geometry: I. Area operators. Class. Quantum Grav. 1997, 14, A55. [Google Scholar] [CrossRef]
- Rovelli, C. Black Hole Entropy from Loop Quantum Gravity. Phys. Rev. Lett. 1996, 77, 3288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashtekar, A.; Baez, J.; Krasnov, K. Quantum Geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 2000, 4, 1. [Google Scholar] [CrossRef]
- Meissner, K.A. Black-hole entropy in loop quantum gravity. Class. Quantum Grav. 2004, 21, 5245. [Google Scholar] [CrossRef] [Green Version]
- Agullo, I.; Díaz-Polo, J.; Fernández-Borja, E.; Villaseñor, E.J. Black Hole State Counting in Loop Quantum Gravity: A Number-Theoretical Approach. Phys. Rev. Lett. 2008, 100, 211301. [Google Scholar] [CrossRef] [Green Version]
- Engle, J.; Noui, K.; Perez, A. Black Hole Entropy and SU(2) Chern-Simons Theory. Phys. Rev. Lett. 2010, 105, 031302. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, M.; González, D.; Celada, M.; Díaz, B. Reformulation of the symmetries of first-order general relativity. Class. Quantum Grav. 2017, 34, 205002. [Google Scholar] [CrossRef] [Green Version]
- Torres del Castillo, G.F. Differentiable Manifolds: A Theoretical Physics Approach, 2nd ed.; Birkhäuser: New York, NY, USA, 2020. [Google Scholar]
- Jacobson, T.; Mohd, A. Black hole entropy and Lorentz-diffeomorphism Noether charge. Phys. Rev. D 2015, 92, 124010. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Rubalcava-García, I.; Vukašinac, T. Actions, topological terms and boundaries in first-order gravity: A review. Int. J. Mod. Phys. D 2016, 25, 1630011. [Google Scholar] [CrossRef] [Green Version]
- Oliveri, R.; Speziale, S. Boundary effects in General Relativity with tetrad variables. Gen. Rel. Grav. 2020, 52, 1. [Google Scholar] [CrossRef]
- Montesinos, M.; Gonzalez, D.; Celada, M. The gauge symmetries of first-order general relativity with matter fields. Class. Quantum Grav. 2018, 35, 205005. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, M.; Romero, R.; Gonzalez, D. The gauge symmetries of f(R) gravity with torsion in the Cartan formalism. Class. Quantum Grav. 2020, 37, 045008. [Google Scholar] [CrossRef] [Green Version]
- Durka, R. Immirzi parameter and Noether charges in first order gravity. J. Phys. Conf. Ser. 2012, 343, 012032. [Google Scholar] [CrossRef] [Green Version]
- Freidel, L.; Geiller, M.; Pranzetti, D. Edge modes of gravity. Part I. Corner metric and Lorentz charges. J. High Energy Phys. 2020, 11, 026. [Google Scholar] [CrossRef]
- Freidel, L.; Geiller, M.; Pranzetti, D. Edge modes of gravity. Part II. Corner metric and Lorentz charges. J. High Energy Phys. 2020, 11, 027. [Google Scholar] [CrossRef]
- Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Benguria, R.; Cordero, P.; Teitelboim, C. Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry. Nucl. Phys. B 1977, 122, 61. [Google Scholar] [CrossRef]
- Corichi, A.; Gomberoff, A. Black holes in de Sitter space: Masses, energies, and entropy bounds. Phys. Rev. D 2004, 69, 064016. [Google Scholar] [CrossRef] [Green Version]
- Aros, R.; Contreras, M.; Olea, R.; Troncoso, R.; Zanelli, J. Conserved Charges for Gravity with Locally Anti–de Sitter Asymptotics. Phys. Rev. Lett. 2000, 84, 1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Jambrina, L.; Lazkoz, R. Geodesic behavior of sudden future singularities. Phys. Rev. D 2004, 70, 121503. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Dey, R. Noether current, black hole entropy and spacetime torsion. Phys. Lett. B 2018, 786, 432–441. [Google Scholar] [CrossRef]
- Frodden, E.; Hidalgo, D. Surface charges for gravity and electromagnetism in the first order formalism. Class. Quantum Grav. 2018, 35, 035002. [Google Scholar] [CrossRef] [Green Version]
- Barnich, G.; Mao, P.; Ruzziconi, R. Conserved currents in the Palatini formulation of general relativity. arXiv 2004, arXiv:2004.15002. [Google Scholar]
- Montesinos, M.; Romero, R.; Díaz, B. Symmetries of first-order Lovelock gravity. Class. Quantum Grav. 2018, 35, 235015. [Google Scholar] [CrossRef] [Green Version]
- Bonder, Y.; Corral, C. Unimodular Einstein-Cartan gravity: Dynamics and conservation laws. Phys. Rev. D 2018, 97, 084001. [Google Scholar] [CrossRef] [Green Version]
- Corral, C.; Bonder, Y. Symmetry algebra in gauge theories of gravity. Class. Quantum Grav. 2019, 36, 045002. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montesinos, M.; Gonzalez, D.; Romero, R.; Celada, M. Off-Shell Noether Currents and Potentials for First-Order General Relativity. Symmetry 2021, 13, 348. https://doi.org/10.3390/sym13020348
Montesinos M, Gonzalez D, Romero R, Celada M. Off-Shell Noether Currents and Potentials for First-Order General Relativity. Symmetry. 2021; 13(2):348. https://doi.org/10.3390/sym13020348
Chicago/Turabian StyleMontesinos, Merced, Diego Gonzalez, Rodrigo Romero, and Mariano Celada. 2021. "Off-Shell Noether Currents and Potentials for First-Order General Relativity" Symmetry 13, no. 2: 348. https://doi.org/10.3390/sym13020348