Different Faces of Generalized Holographic Dark Energy
Abstract
:1. Introduction
- Do there exist suitable form(s) of such that various dark energy models (including the entropic DE models) can be thought to be equivalent to the generalized HDE? If so, then what will be the equivalent form(s) of for the respective DE models?
2. The Thermodynamics of Space-Time and Applications to Cosmology
3. Dark Energy Corresponding to Tsallis, Rényi, and Sharma–Mittal Entropies
4. Generalized Holographic Energy
5. Extended Cases of Entropic Dark Energy Models
6. Some Other DE Models and Their Equivalence with Generalized HDE
6.1. Quintessence Dark Energy
6.2. Ricci Dark Energy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Derivations of Extended Cases of Entropic Dark Energy Models
Appendix A.1. Derivation of Equation (45)
Appendix A.2. Derivation of Equation (47)
Appendix A.3. Derivation of Equation (49)
References
- Hooft, G.T. Dimensional reduction in quantum gravity. arXiv 1993, arXiv:gr-qc/9310026. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Anti de Sitter space and holography. arXiv 1998, arXiv:hep-th/9802150. [Google Scholar] [CrossRef]
- Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825. [Google Scholar] [CrossRef] [Green Version]
- Li, M. A model of holographic dark energy. Phys. Lett. B 2004, 603, 1–5. [Google Scholar] [CrossRef]
- Li, M.; Li, X.-D.; Wang, S.; Wang, Y. Dark energy. arXiv 2001, arXiv:1103.5870. [Google Scholar]
- Wang, S.; Wang, Y.; Li, M. Holographic dark energy. Phys. Rep. 2017, 696, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Pavón, D.; Zimdahl, W. Holographic dark energy and cosmic coincidence. Phys. Lett. B 2005, 628, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy. Gen. Relat. Gravit. 2006, 38, 1285–1304. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Sloth, M.S. Possible connection between the location of the cutoff in the cosmic microwave background spectrum and the equation of state of dark energy. Phys. Rev. Lett. 2004, 93, 221302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Statefinder diagnostic for holographic dark energy model. Int. J. Mod. Phys. D 2005, 14, 1597–1606. [Google Scholar] [CrossRef]
- Guberina, B.; Horvat, R.; Štefančić, H. Hint for quintessence-like scalars from holographic dark energy. J. Cosmol. Astropart. Phys. 2005, 2005, 001. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Wang, P. Dark energy: Vacuum fluctuations, the effective phantom phase, and holography. Phys. Rev. D 2005, 71, 103504. [Google Scholar] [CrossRef] [Green Version]
- Ito, M. Holographic-dark-energy model with non-minimal coupling. EPL Europhys. Lett. 2005, 71, 712. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Wang, B.; Zhang, Y.Z. Holographic dark energy reexamined. Phys. Rev. D 2005, 72, 043510. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N. Restoring holographic dark energy in brane cosmology. Phys. Lett. B 2008, 660, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Li, T. A modified holographic dark energy model with infrared infinite extra dimension (s). Phys. Lett. B 2010, 683, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Bouhmadi-Lopez, M.; Errahmani, A.; Ouali, T. Cosmology of a holographic induced gravity model with curvature effects. Phys. Rev. D 2011, 84, 083508. [Google Scholar] [CrossRef] [Green Version]
- Malekjani, M. Generalized holographic dark energy model in the Hubble length. Astrophys. Space Sci. 2013, 347, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Khurshudyan, M.; Sadeghi, J.; Myrzakulov, R.; Pasqua, A.; Farahani, H. Interacting quintessence dark energy models in Lyra manifold. Adv. High Energy Phys. 2014, 2014, 878092. [Google Scholar] [CrossRef]
- Khurshudyan, M. Viscous holographic dark energy universe with Nojiri-Odintsov cut-off. Astrophys. Space Sci. 2016, 361, 1–11. [Google Scholar]
- Landim, R.C.G. Holographic dark energy from minimal supergravity. Int. J. Mod. Phys. D 2016, 25, 1650050. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Wu, F.; Chen, X.; Shen, Y.-G. Holographic dark energy model from Ricci scalar curvature. Phys. Rev. D 2009, 79, 043511. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lin, C.; Wang, Y. Some issues concerning holographic dark energy. J. Cosmol. Astropart. Phys. 2008, 2008, 023. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational constraints on Barrow holographic dark energy. arXiv 2020, arXiv:2005.10302. [Google Scholar]
- Zhang, X.; Wu, F.Q. Constraints on holographic dark energy from type Ia supernova observations. Phys. Rev. D 2005, 72, 043524. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, X.-D.; Wang, S.; Zhang, X. Holographic dark energy models: A comparison from the latest observational data. J. Cosmol. Astropart. Phys. 2009, 2009, 036. [Google Scholar] [CrossRef]
- Feng, C.; Wang, B.; Gong, Y.; Su, R.-K. Testing the viability of the interacting holographic dark energy model by using combined observational constraints. J. Cosmol. Astropart. Phys. 2007, 2007, 005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy. Phys. Rev. D 2009, 79, 103509. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Saridakis, E.N.; Setare, M.R.; Xu, L. Observational constraints on holographic dark energy with varying gravitational constant. J. Cosmol. Astropart. Phys. 2010, 2010, 031. [Google Scholar] [CrossRef] [Green Version]
- Micheletti, S.M.R. Observational constraints on holographic tachyonic dark energy in interaction with dark matter. J. Cosmol. Astropart. Phys. 2010, 2010, 009. [Google Scholar] [CrossRef]
- Huang, Q.G.; Gong, Y. Supernova constraints on a holographic dark energy model. J. Cosmol. Astropart. Phys. 2004, 2004, 006. [Google Scholar] [CrossRef]
- Mukherjee, P.; Mukherjee, A.; Jassal, H.K.; Dasgupta, A.; Banerjee, N. Holographic dark energy: Constraints on the interaction from diverse observational data sets. Eur. Phys. J. Plus 2019, 134, 147. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Covariant generalized holographic dark energy and accelerating universe. Eur. Phys. J. C 2017, 77, 1–8. [Google Scholar] [CrossRef]
- Sharif, M.; Saba, S. Tsallis holographic dark energy in f (G, T) gravity. Symmetry 2019, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Jawad, A.; Bamba, K.; Younas, M.; Qummer, S.; Rani, S. Tsallis, Rényi and Sharma-Mittal holographic dark energy models in loop quantum cosmology. Symmetry 2018, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- Horvat, R. Holographic bounds and Higgs inflation. Phys. Lett. B 2011, 699, 174–176. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Holographic inflation. Phys. Lett. B 2019, 797, 134829. [Google Scholar] [CrossRef]
- Paul, T. Holographic correspondence of F (R) gravity with/without matter fields. EPL Europhys. Lett. 2019, 127, 20004. [Google Scholar] [CrossRef] [Green Version]
- Bargach, A.; Bargach, F.; Errahmani, A.; Ouali, T. Induced gravity effect on inflationary parameters in a holographic cosmology. Int. J. Mod. Phys. D 2020, 29, 2050010. [Google Scholar] [CrossRef]
- Elizalde, E.; Timoshkin, A.V. Viscous fluid holographic inflation. Eur. Phys. J. C 2019, 79, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Oliveros, A.; Acero, M.A. Inflation driven by a holographic energy density. EPL Europhys. Lett. 2020, 128, 59001. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Paul, T. Unifying holographic inflation with holographic dark energy: A covariant approach. Phys. Rev. D 2020, 102, 023540. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Holographic bounce. Nucl. Phys. B 2019, 949, 114790. [Google Scholar] [CrossRef]
- Brevik, I.; Timoshkin, A.V. Viscous fluid holographic bounce. Int. J. Geom. Methods M 2020, 17, 2050023. [Google Scholar] [CrossRef] [Green Version]
- Corianò, C.; Frampton, P.H. Holographic principle, cosmological constant and cyclic cosmology. Mod. Phys. Lett. A 2020, 35, 1950355. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Odintsov, S.D.; Oikonomou, V.K.; Paul, T. Extended matter bounce scenario in ghost free f (R, G) gravity compatible with GW170817. Nucl. Phys. B 2020, 954, 114984. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Paul, T. From a bounce to the dark energy era with F (R) gravity. arXiv 2020, arXiv:2009.09947. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Lyra, M.L.; Tsallis, C. Nonextensivity and multifractality in low-dimensional dissipative systems. Phys. Rev. Lett. 1998, 80, 53. [Google Scholar] [CrossRef] [Green Version]
- Wilk, G.; Włodarczyk, Z. Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 2000, 84, 2770. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 1–7. [Google Scholar] [CrossRef]
- Komatsu, N.; Kimura, S. Entropic cosmology for a generalized black-hole entropy. Phys. Rev. D 2013, 88, 083534. [Google Scholar] [CrossRef] [Green Version]
- Barboza, E.M., Jr.; Nunes, R.C.; Abreu, E.M.C.; Neto, J.A. Dark energy models through nonextensive Tsallis’ statistics. Phys. A 2015, 436, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Lymperis, A.; Saridakis, E.N. Modified cosmology through nonextensive horizon thermodynamics. Eur. Phys. J. C 2018, 78, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saridakis, E.N.; Bamba, K.; Myrzakulov, R.; Anagnostopoulos, F.K. Holographic dark energy through Tsallis entropy. arXiv 2018, arXiv:1806.01301. [Google Scholar] [CrossRef] [Green Version]
- Sheykhi, A. Modified Friedmann equations from Tsallis entropy. Phys. Lett. B 2018, 785, 118–126. [Google Scholar] [CrossRef]
- Artymowski, M.; Mielczarek, J. Quantum Hubble horizon. Eur. Phys. J. C 2019, 79, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A. Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition law. EPL 2018, 121, 45002. [Google Scholar] [CrossRef]
- Jawad, A.; Iqbal, A. Modified cosmology through Renyi and logarithmic entropies. Int. J. Geom. Methods M 2018, 15, 1850130. [Google Scholar] [CrossRef]
- Zadeh, M.A.; Sheykhi, A.; Moradpour, H. Tsallis agegraphic dark energy model. Mod. Phys. Lett. A 2019, 34, 1950086. [Google Scholar] [CrossRef]
- da Silva, W.J.C.; Silva, R. Extended ACDM model and viscous dark energy: A Bayesian analysis. arXiv 2019, arXiv:1810.03759. [Google Scholar]
- Biro, T.S.; Czinner, V.G. A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy. Phys. Lett. B 2013, 726, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Czinner, V.G.; Iguchi, H. Rényi entropy and the thermodynamic stability of black holes. Phys. Lett. B 2016, 752, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, N. Cosmological model from the holographic equipartition law with a modified Rényi entropy. Eur. Phys. J. C 2017, 77, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moradpour, H.; Bonilla, A.; Abreu, E.M.C.; Neto, J.A. Accelerated cosmos in a nonextensive setup. Phys. Rev. D 2017, 96, 123504. [Google Scholar] [CrossRef] [Green Version]
- Moradpour, H.; Sheykhi, A.; Corda, C.; Salako, I.G. Implications of the generalized entropy formalisms on the Newtonian gravity and dynamics. Phys. Lett. B 2018, 783, 82–85. [Google Scholar] [CrossRef]
- Moradpour, H.; Moosavi, S.A.; Lobo, I.P.; Morais Graça, J.P.; Jawad, A.; Salako, I.G. Thermodynamic approach to holographic dark energy and the Rényi entropy. Eur. Phys. J. C 2018, 78, 1–6. [Google Scholar] [CrossRef]
- Jahromi, A.S.; Moosavi, S.A.; Moradpour, H.; Morais Graçac, J.P.; Loboc, I.P.; Salakod, I.G.; Jawade, A. Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 2018, 780, 21–24. [Google Scholar] [CrossRef]
- Masi, M. A step beyond Tsallis and Rényi entropies. Phys. Let. A 2005, 338, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, J.J. Scalar fields in cosmology with an exponential potential. Phys. Lett. B 1987, 185, 341–344. [Google Scholar] [CrossRef]
- Barreiro, T.; Copeland, E.J.; Nunes, N.J. Quintessence arising from exponential potentials. Phys. Rev. D 2000, 61, 127301. [Google Scholar] [CrossRef] [Green Version]
- Rubano, C.; Scudellaro, P. On some exponential potentials for a cosmological scalar field as quintessence. Gen. Relativ. Gravit. 2002, 34, 307–328. [Google Scholar] [CrossRef]
- Sangwan, A.; Tripathi, A.; Jassal, H.K. Observational constraints on quintessence models of dark energy. arXiv 2018, arXiv:1804.09350. [Google Scholar]
- Adak, D.; Ali, A.; Majumdar, D. Late-time acceleration in a slow-moving Galileon field. Phys. Rev. D 2013, 88, 024007. [Google Scholar] [CrossRef] [Green Version]
- del Campo, S.; Fabris, J.C.; Herrera, R.; Zimdahl, W. Cosmology with Ricci dark energ. Phys. Rev. D 2013, 87, 123002. [Google Scholar] [CrossRef] [Green Version]
- Granda, L.N.; Oliveros, A. Infrared cut-off proposal for the holographic density. Phys. Lett. B 2008, 669, 275–277. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292–3300. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Phys. Rept. 2005, 406, 49–125. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Kim, S.P. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. J. High Energy Phys. 2005, 2005, 050. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.; Cai, R.G. Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe. Phys. Rev. D 2007, 75, 084003. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Cao, L.M. Unified first law and the thermodynamics of the apparent horizon in the FRW universe. Phys. Rev. D 2007, 75, 064008. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N.; Myrzakulov, R. Correspondence of cosmology from non-extensive thermodynamics with fluids of generalized equation of state. Nucl. Phys. B 2020, 950, 114850. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C 2019, 79, 1–10. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale invariance, horizons, and inflation. Mon. Not. R. Astron. Soc. 2021, 504, 4005–4014. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nojiri, S.; Odintsov, S.D.; Paul, T. Different Faces of Generalized Holographic Dark Energy. Symmetry 2021, 13, 928. https://doi.org/10.3390/sym13060928
Nojiri S, Odintsov SD, Paul T. Different Faces of Generalized Holographic Dark Energy. Symmetry. 2021; 13(6):928. https://doi.org/10.3390/sym13060928
Chicago/Turabian StyleNojiri, Shin’ichi, Sergei D. Odintsov, and Tanmoy Paul. 2021. "Different Faces of Generalized Holographic Dark Energy" Symmetry 13, no. 6: 928. https://doi.org/10.3390/sym13060928
APA StyleNojiri, S., Odintsov, S. D., & Paul, T. (2021). Different Faces of Generalized Holographic Dark Energy. Symmetry, 13(6), 928. https://doi.org/10.3390/sym13060928