Shearing Deformations of β-Cristobalite-Like Boron Arsenate
Abstract
:1. Introduction
2. Rationale
3. Simulations and Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schulze, G.E.R. Die Kristallstruktur von BPO4 und BAsO4. Naturwissenschaften 1933, 21, 562. [Google Scholar] [CrossRef]
- Schulze, G. Die Kristallstruktur von BPO4 und BAsO4. Z. Phys. Chem. 1934, B24, 215–240. [Google Scholar] [CrossRef]
- Schulze, G. Boron Arsenate. J. Am. Chem. Soc. 1935, 57, 883. [Google Scholar] [CrossRef]
- Berger, E.M. Sur quelques Reactions Amorcees. C. R. Acad. Sci. 1920, 170, 1492. [Google Scholar]
- Gruner, E. Phosphat- und Arsenathydrate dreiwertiger Elemente, I. Borphosphat- und Borarsenathydrate. Z. Anorg. Allg. Chem. 1934, 219, 181–191. [Google Scholar] [CrossRef]
- Levi, G.R.; Ghiron, D. Chem. Zbl. 1934; 1, 1719.
- Schumb, W.C.; Hartford, W.H. Condensation Reactions of Boric Acid. J. Am. Chem. Soc. 1934, 56, 2613–2615. [Google Scholar] [CrossRef]
- Nieuwenkamp, W. Die Kristallstruktur des Tief-Cristobalits SiO2. Z. Kristallogr. Cryst. Mater. 1935, 92, 82–88. [Google Scholar] [CrossRef]
- Shafer, E.C.; Shafer, M.W.; Roy, R. Studies of Silica Structure Phases II: Data on FePO4, FeAsO4, MnPO4, BPO4, AlVO4 and others. Z. Kristallogr. 1956, 108, 263–275. [Google Scholar] [CrossRef]
- Baykal, A.; Evren, A. Hydrothermal and Microwave-Assisted Synthesis of Boroarsenate, BAsO4. Turk. J. Chem. 2006, 30, 723–730. [Google Scholar]
- Dagdelen, J.; Montoya, J.; de Jong, M.; Persson, K. Computational prediction of new auxetic materials. Nat. Commun. 2017, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Grima-Cornish, J.N.; Vella-Żarb, L.; Grima, J.N. Negative Linear Compressibility and Auxeticity in Boron Arsenate. Ann. Phys. 2020, 532, 1900550. [Google Scholar] [CrossRef]
- Haines, J.; Chateau, C.; Léger, J.M.; Bogicevic, C.; Hull, S.; Klug, D.D.; Tse, J.S. Collapsing Cristobalitelike Structures in Silica Analogues at High Pressure. Phys. Rev. Lett. 2003, 91, 015503. [Google Scholar] [CrossRef] [PubMed]
- Lakes, R.S. Negative-Poisson’s-Ratio Materials: Auxetic Solids. Annu. Rev. Mater. Res. 2017, 47. [Google Scholar] [CrossRef]
- Lim, T.-C. Auxetic Materials and Structures, 1st ed.; Springer: Cham, Switzerland, 2015; ISBN 978-981-287-274-6. [Google Scholar]
- Cairns, A.B.; Goodwin, A.L. Negative linear compressibility. Phys. Chem. Chem. Phys. 2015, 17, 20449–20465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, L.J.; Ashby, M.F.; Schajer, G.S.; Robertson, C.I. The Mechanics of Two-Dimensional Cellular Materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 1982, 382, 25–42. [Google Scholar]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; ISBN 0521495601. [Google Scholar]
- Alderson, K.L.; Alderson, A.; Smart, G.; Simkins, V.R.; Davies, P.J. Auxetic polypropylene fibres:Part 1—Manufacture and characterisation. Plast. Rubber Compos. 2002, 31, 344–349. [Google Scholar] [CrossRef]
- He, C.; Liu, P.; Griffin, A.C. Toward Negative Poisson Ratio Polymers through Molecular Design. Macromolecules 1998, 31, 3145–3147. [Google Scholar] [CrossRef]
- Friis, E.A.; Lakes, R.S.; Park, J.B. Negative Poisson’s ratio polymeric and metallic foams. J. Mater. Sci. 1988, 23, 4406–4414. [Google Scholar] [CrossRef]
- Lakes, R.S. Deformation mechanisms in negative Poisson’s ratio materials: Structural aspects. J. Mater. Sci. 1991, 26, 2287–2292. [Google Scholar] [CrossRef]
- Scarpa, F.; Tomlin, P.J. On the transverse shear modulus of negative Poisson’s ratio honeycomb structures. Fatigue Fract. Eng. Mater. Struct. 2000, 23, 717–720. [Google Scholar] [CrossRef]
- Gatt, R.; Vella Wood, M.; Gatt, A.; Zarb, F.; Formosa, C.; Azzopardi, K.M.; Casha, A.; Agius, T.P.; Schembri-Wismayer, P.; Attard, L.; et al. Negative Poisson’s ratios in tendons: An unexpected mechanical response. Acta Biomater. 2015, 24, 201–208. [Google Scholar] [CrossRef]
- Novikova, N.E.; Lisovenko, D.S.; Sizova, N.L. Peculiarities of the Structure, Moduli of Elasticity, and Knoop Indentation Patterns of Deformation and Fracture of Single Crystals of Potassium, Rubidium, Cesium, and Ammonium Hydrophthalates. Crystallogr. Rep. 2018, 63, 438–450. [Google Scholar] [CrossRef]
- Alderson, A.; Evans, K.E. Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 2002, 89, 225503. [Google Scholar] [CrossRef]
- Grima-Cornish, J.N.; Vella-Żarb, L.; Grima, J.N. On the behaviour of β-cristobalite-like BAsO4 when subjected to uniaxial loading in its [001] direction and the implications on its ‘negative’ characteristics. Phys. Status Solidi B 2020. [Google Scholar] [CrossRef]
- Evans, K.E.; Nkansah, M.A.; Hutcherson, I.J.; Rogers, S.C. Molecular network design. Nature 1991, 353, 124. [Google Scholar] [CrossRef]
- Evans, K.E.; Alderson, A. Auxetic Materials: Functional Materials and Structures from Lateral Thinking! Adv. Mater. 2000, 12, 617–628. [Google Scholar] [CrossRef]
- Wojciechowski, K.W. Two-Dimensional isotropic system with a negative poisson ratio. Phys. Lett. A 1989, 137, 60–64. [Google Scholar] [CrossRef]
- Wojciechowski, K.W.; Branka, A.C. Auxetics: Materials and Models with Negative Poisson’s Ratios. Mol. Phys. Rep. 1994, 6, 71–85. [Google Scholar]
- Baughman, R.H.; Galvão, D.S. Crystalline networks with unusual predicted mechanical and thermal properties. Nature 1993, 365, 735–737. [Google Scholar] [CrossRef]
- Grima-Cornish, J.N.; Grima, J.N.; Evans, K.E. On the Structural and Mechanical Properties of Poly(Phenylacetylene) Truss-Like Hexagonal Hierarchical Nanonetworks. Phys. Status Solidi B 2017, 254, 1700190. [Google Scholar] [CrossRef]
- Strek, T.; Maruszewski, B.T.; Narojczyk, J.W.; Wojciechowski, K.W. Finite Element Analysis of Auxetic Plate Deformation. J. Non Cryst. Solids 2008, 354, 4475–4480. [Google Scholar] [CrossRef]
- Grima-Cornish, J.N.; Grima, J.N.; Attard, D. Negative Mechanical Materials and Metamaterials: Giant Out-of-Plane Auxeticity from Multi-Dimensional Wine-Rack-like Motifs. MRS Adv. 2020, 5, 717–725. [Google Scholar] [CrossRef]
- Grima-Cornish, J.N.; Grima, J.N.; Attard, D. A Novel Mechanical Metamaterial Exhibiting Auxetic Behavior and Negative Compressibility. Materials 2019, 13, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grima, J.N.; Evans, K.E. Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 2000, 19, 1563–1565. [Google Scholar] [CrossRef]
- Grima, J.N.; Mizzi, L.; Azzopardi, K.M.; Gatt, R. Auxetic Perforated Mechanical Metamaterials with Randomly Oriented Cuts. Adv. Mater. 2016, 28. [Google Scholar] [CrossRef] [PubMed]
- Grima, J.N.; Gatt, R. Perforated sheets exhibiting negative Poisson’s ratios. Adv. Eng. Mater. 2010, 12. [Google Scholar] [CrossRef]
- Milton, G.W. Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Solids 2013, 61, 1543–1560. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, P.S.; Gatt, R.; Grima, J.N. The push drill mechanism as a novel method to create 3D mechanical metamaterial structures. Phys. Status Solidi RRL 2020, 2000125. [Google Scholar] [CrossRef]
- Attard, D.; Farrugia, P.S.; Gatt, R.; Grima, J.N. Starchirals—A novel class of auxetic hierarchal structures. Int. J. Mech. Sci. 2020, 179. [Google Scholar] [CrossRef]
- Sigmund, O. Tailoring materials with prescribed elastic properties. Mech. Mater. 1995, 20, 351–368. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H. Auxetic materials and their potential applications in textiles. Text. Res. J. 2014. [Google Scholar] [CrossRef]
- Gatt, R.; Mizzi, L.; Azzopardi, J.I.; Azzopardi, K.M.; Attard, D.; Casha, A.; Briffa, J.; Grima, J.N. Hierarchical Auxetic Mechanical Metamaterials. Sci. Rep. 2015, 5, 8395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizzi, L.; Mahdi, E.M.; Titov, K.; Gatt, R.; Attard, D.; Evans, K.E.; Grima, J.N.; Tan, J.C. Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio. Mater. Des. 2018, 146, 28–37. [Google Scholar] [CrossRef]
- Lim, T.-C. A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos. Struct. 2019, 226, 111256. [Google Scholar] [CrossRef]
- Dudek, K.K.; Wolak, W.; Dudek, M.R.; Caruana-Gauci, R.; Gatt, R.; Wojciechowski, K.W.; Grima, J.N. Programmable magnetic domain evolution in magnetic auxetic systems. Phys. Status Sol. RRL 2017, 11, 1700122. [Google Scholar] [CrossRef]
- Allen, T.; Duncan, O.; Foster, L.; Senior, T.; Zampieri, D.; Edeh, V.; Alderson, A. Auxetic foam for snow-sport safety devices. In Snow Sports Trauma and Safety: Conference Proceedings of the International Society for Skiing Safety; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Alderson, A.; Davies, P.J.; Williams, M.R.; Evans, K.E.; Alderson, K.L.; Grima, J.N. Modelling of the mechanical and mass transport properties of auxetic molecular sieves: An idealised organic (polymeric honeycomb) host-guest system. Mol. Simul. 2005, 31, 897–905. [Google Scholar] [CrossRef]
- Alderson, A.; Alderson, K.L.; Evans, K.E.; Grima, J.N.; Williams, M.R.; Davies, P.J. Modelling the deformation mechanisms, structure-property relationships and applications of auxetic nanomaterials. Phys. Status Solidi B 2005, 242. [Google Scholar] [CrossRef]
- Ali, M.N.; Busfield, J.J.C.; Rehman, I.U. Auxetic oesophageal stents: Structure and mechanical properties. J. Mater. Sci. Mater. Med. 2014, 25, 527–553. [Google Scholar] [CrossRef]
- Gatt, R.; Caruana-Gauci, R.; Attard, D.; Casha, A.R.; Wolak, W.; Dudek, K.; Mizzi, L.; Grima, J.N. On the properties of real finite-sized planar and tubular stent-like auxetic structures. Phys. Status Solidi B 2014, 251. [Google Scholar] [CrossRef]
- Lim, T. 2D Structures Exhibiting Negative Area Compressibility. Phys. Status Solidi B 2017, 1–11. [Google Scholar] [CrossRef]
- Cairns, A.B.; Thompson, A.L.; Tucker, M.G.; Haines, J.; Goodwin, A.L. Rational Design of Materials with Extreme Negative Compressibility: Selective Soft-Mode Frustration in KMn[Ag(CN)2]3. J. Am. Chem. Soc. 2012, 134, 4454–4456. [Google Scholar] [CrossRef]
- Gatt, R.; Grima, J.N. Negative compressibility. Phys. Status Solidi RRL 2008, 2, 236–238. [Google Scholar] [CrossRef]
- Grima, J.N.; Attard, D.; Gatt, R. Truss-Type systems exhibiting negative compressibility. Phys. Status Solidi B 2008, 245, 2405–2414. [Google Scholar] [CrossRef]
- Degabriele, E.P.; Attard, D.; Grima-Cornish, J.N.; Caruana-Gauci, R.; Gatt, R.; Evans, K.E.; Grima, J.N. On the Compressibility Properties of the Wine-Rack-Like Carbon Allotropes and Related Poly(phenylacetylene) Systems. Phys. Status Solidi B 2019, 256, 1800572. [Google Scholar] [CrossRef] [Green Version]
- Baughman, R.H.; Stafström, S.; Cui, C.; Dantas, S.O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Kadic, M.; Wegener, M. Poroelastic metamaterials with negative effective static compressibility. Appl. Phys. Lett. 2017, 110, 171901. [Google Scholar] [CrossRef]
- Lakes, R.; Wojciechowski, K.W. Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi B 2008, 245, 545–551. [Google Scholar] [CrossRef]
- Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. Auxetic mechanics of crystalline materials. Mech. Solids 2010, 45. [Google Scholar] [CrossRef]
- Baughman, R.H.; Shacklette, J.M.; Zakhidov, A.A.; Stafströ, S. Negative Poisson’s ratios as a common feature of cubic metals. Nature 1998, 392, 362–365. [Google Scholar] [CrossRef]
- Branka, A.C.; Heyes, D.M.; Wojciechowski, K.W. Auxeticity of cubic materials under pressure. Phys. Status Solidi B 2011, 248, 96–104. [Google Scholar] [CrossRef]
- Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S.; Volkov, M.A. Negative Poisson’s ratio for cubic crystals and nano/microtubes. Phys. Mesomech. 2014, 17, 97–115. [Google Scholar] [CrossRef]
- Gorodtsov, V.A.; Lisovenko, D.S. Auxetics among Materials with Cubic Anisotropy. Mech. Solids 2020, 55, 461–474. [Google Scholar] [CrossRef]
- Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S.; Volkov, M.A. Auxetics among 6-constant tetragonal crystals. Lett. Mater. 2015, 5, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. Young’s modulus and Poisson’s ratio for seven-constant tetragonal crystals and nano/microtubes. Phys. Mesomech. 2015, 18, 213–222. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals: Their Representations by Tensors and Matrices; Clarendon Press: Wotton-Under-Edge, UK, 1957; ISBN 0198511655. [Google Scholar]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.P. Piezoelectric Crystals and Their Application to Ultrasonics; Van Nostrand: New York, NY, USA, 1950. [Google Scholar]
- Schlenker, J.L.; Gibbs, G.V.; Boisen Jnr, M.B. Strain-tensor components expressed in terms of lattice parameters. Acta Crystallogr. Sect. A 1978, 34, 52–54. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grima, J.N.; Farrugia, P.S.; Gatt, R.; Attard, D. On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation. Phys. Status Solidi B 2008, 245. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Alderson, A.; Evans, K.E. On the auxetic properties of “rotating rectangles” with different connectivity. J. Phys. Soc. Jpn. 2005, 74, 2866–2867. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Alderson, A.; Evans, K.E. On the origin of auxetic behaviour in the silicate α-cristobalite. J. Mater. Chem. 2005, 15, 4003. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Alderson, A.; Evans, K.E. An alternative explanation for the negative Poisson’s ratios in α-cristobalite. Mater. Sci. Eng. A 2006, 423, 219–224. [Google Scholar] [CrossRef]
sij (x10−12 Pa−1) | j = 1 | 2 | 3 | 4 | 5 | 6 |
i = 1 | 10.4 | 3.4 | −5.1 | 0.0 | 0.0 | 0.3 |
2 | 3.4 | 10.4 | −5.1 | 0.0 | 0.0 | −0.3 |
3 | −5.1 | −5.1 | 12.6 | 0.0 | 0.0 | 0.0 |
4 | 0.0 | 0.0 | 0.0 | 18.9 | 0.0 | 0.0 |
5 | 0.0 | 0.0 | 0.0 | 0.0 | 18.9 | 0.0 |
6 | 0.3 | −0.3 | 0.0 | 0.0 | 0.0 | 24.7 |
(a) The crystal structure of boron arsenate as reported by Schulze. | ||||||||||
Unit Cell Properties | ||||||||||
Space Group | ||||||||||
a = b | 4.4580 | |||||||||
c | 6.7960 | |||||||||
90° | ||||||||||
Fractional Atomic Coordinates | ||||||||||
B | 0.00000 | 0.50000 | 0.25000 | |||||||
As | 0.00000 | 0.00000 | 0.00000 | |||||||
O | 0.16000 | 0.26000 | 0.14000 | |||||||
(b) The atom labelling system used in this work, see Figure 2. | ||||||||||
Element | Fract. Coordinates | Transformation Applied | P1 Fract. Coordinates | Label | ||||||
As | 0 | 0 | 0 | x | y | z | 0 | 0 | 0 | A1 |
−x | −y | z | 0 | 0 | 0 | |||||
y | −x | −z | 0 | 0 | 0 | |||||
−y | x | −z | 0 | 0 | 0 | |||||
x + ½ | y + ½ | z + ½ | 0.5 | 0.5 | 0.5 | A2 | ||||
−x + ½ | −y + ½ | −z + ½ | 0.5 | 0.5 | 0.5 | |||||
y + ½ | −x + ½ | −z + ½ | 0.5 | 0.5 | 0.5 | |||||
−y + ½ | x + ½ | −z + ½ | 0.5 | 0.5 | 0.5 | |||||
B | 0 | 0.5 | 0.25 | x | y | z | 0 | 0.5 | 0.25 | B1 |
−x | −y | z | 0 | 0.5 | 0.25 | |||||
y | −x | −z | 0.5 | 0 | 0.75 | B2 | ||||
−y | x | −z | 0.5 | 0 | 0.75 | |||||
x + ½ | y + ½ | z + ½ | 0.5 | 0 | 0.75 | |||||
−x + ½ | −y + ½ | −z + ½ | 0.5 | 0 | 0.75 | |||||
y + ½ | −x + ½ | −z + ½ | 0.5 | 0 | 0.75 | |||||
−y + ½ | x + ½ | −z + ½ | 0.5 | 0 | 0.75 | |||||
O | 0.16 | 0.26 | 0.14 | x | y | z | 0.16 | 0.26 | 0.14 | O1 |
−x | −y | z | 0.84 | 0.74 | 0.14 | O3 | ||||
y | -x | −z | 0.26 | 0.84 | 0.86 | O2 | ||||
−y | x | −z | 0.74 | 0.16 | 0.86 | O4 | ||||
x + ½ | y + ½ | z + ½ | 0.66 | 0.76 | 0.64 | O5 | ||||
−x + ½ | −y + ½ | −z + ½ | 0.34 | 0.24 | 0.64 | O7 | ||||
y + ½ | −x + ½ | −z + ½ | 0.76 | 0.34 | 0.36 | O6 | ||||
−y + ½ | x + ½ | −z + ½ | 0.24 | 0.66 | 0.36 | O8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grima-Cornish, J.N.; Vella-Żarb, L.; Wojciechowski, K.W.; Grima, J.N. Shearing Deformations of β-Cristobalite-Like Boron Arsenate. Symmetry 2021, 13, 977. https://doi.org/10.3390/sym13060977
Grima-Cornish JN, Vella-Żarb L, Wojciechowski KW, Grima JN. Shearing Deformations of β-Cristobalite-Like Boron Arsenate. Symmetry. 2021; 13(6):977. https://doi.org/10.3390/sym13060977
Chicago/Turabian StyleGrima-Cornish, James N., Liana Vella-Żarb, Krzysztof W. Wojciechowski, and Joseph N. Grima. 2021. "Shearing Deformations of β-Cristobalite-Like Boron Arsenate" Symmetry 13, no. 6: 977. https://doi.org/10.3390/sym13060977
APA StyleGrima-Cornish, J. N., Vella-Żarb, L., Wojciechowski, K. W., & Grima, J. N. (2021). Shearing Deformations of β-Cristobalite-Like Boron Arsenate. Symmetry, 13(6), 977. https://doi.org/10.3390/sym13060977