Investigation of the Thermal QCD Matter from Canonical Sectors
Abstract
:1. Introduction
2. Canonical Sectors
3. Known Results (Inputs)
- Roberge–Weiss (RW) periodicity: The special periodicity for several thermodynamic quantities and order parameters as a function of . Its period depends on the number of colors as ;
- Roberge–Weiss (RW) transition: With a high T, several thermodynamic quantities and order parameters have singularities at along the axis where —this is called the RW transition. The -even quantities such as the chiral condensate represent the cusp and the -odd quantities such as the quark number density represent the gap;
- Roberge–Weiss (RW) endpoint: The origin of the RW periodicity is different in the low and high T regions, and thus there is an endpoint of the RW transition line. This means that there are no singularities with a low T. It is natural that the effects of the temporal boundary condition finally vanish when we approach zero temperature.
4. Anatomy of Thermal QCD (Output)
- (1)
- In the case of the first panel of Figure 1, there is no second-order transition point at a finite with any T. However, is 0 at and thus the first-order singularity cannot induce the singularity in . We can expect a rapidly changing point near the temperature at which the first-order transition line meets the T-axis. The temperature of the rapidly changing point approaches to with increasing quark mass. Then, the temperature is the characteristic energy scale of the confinement–deconfinement transition;
- (2)
- In the case of the second panel of Figure 1, there are second-order points corresponding to the endpoints of the beard lines. In this case, rapidly changes around and/or , but there are no singularities. We may interpret this as the characteristic energy scale for the confinement–deconfinement transition;
- (3)
- In the case of the third panel of Figure 1, there are second-order points at the RW endpoints. From the same discussion as in case 2, we can observe a steep change of around , but there are no singularities. We may interpret this as the characteristic energy scale for the confinement–deconfinement transition;
- (4)
- In the case of the fourth panel of Figure 1, the first-order transition line is attached to the line, but it does not start from the RW endpoint. At present, this situation is not obtained in lattice QCD simulations and QCD effective model computations. We here present it as a possible scenario, but it seems to be unfeasible in QCD.
5. Discussion and Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greensite, J. An Introduction to the Confinement Problem; Springer: Heidelberg, Germany, 2011; Volume 821. [Google Scholar]
- Detar, C.E.; McLerran, L.D. Order Parameters for the Confinement - Deconfinement Phase Transition in SU(N) Gauge Theories With Quarks. Phys. Lett. 1982, 119B, 171–173. [Google Scholar] [CrossRef]
- Sato, M. Topological discrete algebra, ground state degeneracy, and quark confinement in QCD. Phys. Rev. 2008, D77, 045013. [Google Scholar] [CrossRef] [Green Version]
- Kashiwa, K.; Ohnishi, A. Topological feature and phase structure of QCD at complex chemical potential. Phys. Lett. 2015, B750, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Kashiwa, K.; Ohnishi, A. Quark number holonomy and confinement-deconfinement transition. Phys. Rev. 2016, D93, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kashiwa, K.; Ohnishi, A. Topological deconfinement transition in QCD at finite isospin density. Phys. Lett. 2017, B772, 669–674. [Google Scholar] [CrossRef]
- Alexandru, A.; Faber, M.; Horvath, I.; Liu, K.F. Lattice QCD at finite density via a new canonical approach. Phys. Rev. 2005, D72, 114513. [Google Scholar] [CrossRef] [Green Version]
- Kratochvila, S.; de Forcrand, P. QCD at zero baryon density and the Polyakov loop paradox. Phys. Rev. 2006, D73, 114512. [Google Scholar] [CrossRef] [Green Version]
- De Forcrand, P.; Kratochvila, S. Finite density QCD with a canonical approach. Nucl. Phys. Proc. Suppl. 2006, 153, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, R.; Nakamura, A.; Oka, S. Canonical approach to finite density QCD with multiple precision computation. Phys. Rev. 2016, D93, 094508. [Google Scholar] [CrossRef] [Green Version]
- Oka, S. Canonical approach - Investigation of finite density QCD phase transition. arXiv 2017, arXiv:1712.08974. [Google Scholar]
- Kashiwa, K.; Kouno, H. Anatomy of the dense QCD matter from canonical sectors. arXiv 2021, arXiv:2103.11579. [Google Scholar]
- Kashiwa, K.; Ohnishi, A. Investigation of confinement-deconfinement transition via probability distributions. arXiv 2017, arXiv:1712.06220. [Google Scholar]
- Almasi, G.A.; Friman, B.; Morita, K.; Lo, P.M.; Redlich, K. Fourier coefficients of the net-baryon number density and chiral criticality. arXiv 2018, arXiv:1805.04441. [Google Scholar] [CrossRef] [Green Version]
- Vovchenko, V.; Greiner, C.; Koch, V.; Stoecker, H. Critical point signatures in the cluster expansion in fugacities. Phys. Rev. D 2020, 101, 014015. [Google Scholar] [CrossRef] [Green Version]
- Kashiwa, K. Imaginary Chemical Potential, NJL-Type Model and Confinement–Deconfinement Transition. Symmetry 2019, 11, 562. [Google Scholar] [CrossRef] [Green Version]
- Roberge, A.; Weiss, N. Gauge Theories With Imaginary Chemical Potential and the Phases of QCD. Nucl.Phys. 1986, B275, 734. [Google Scholar] [CrossRef]
- Yang, C.N.; Lee, T.D. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 1952, 87, 404. [Google Scholar] [CrossRef]
- Lee, T.D.; Yang, C.N. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 1952, 87, 410. [Google Scholar] [CrossRef]
- Boyda, D.L.; Bornyakov, V.G.; Goy, V.A.; Zakharov, V.I.; Molochkov, A.V.; Nakamura, A.; Nikolaev, A.A. Novel approach to deriving the canonical generating functional in lattice QCD at a finite chemical potential. JETP Lett. 2016, 104, 657–661. [Google Scholar] [CrossRef]
- Bornyakov, V.G.; Boyda, D.L.; Goy, V.A.; Molochkov, A.V.; Nakamura, A.; Nikolaev, A.A.; Zakharov, V.I. New approach to canonical partition functions computation in Nf=2 lattice QCD at finite baryon density. Phys. Rev. D 2017, 95, 094506. [Google Scholar] [CrossRef] [Green Version]
- Wakayama, M.; Bornyakov, V.G.; Boyda, D.L.; Goy, V.A.; Iida, H.; Molochkov, A.V.; Nakamura, A.; Zakharov, V.I. Lee-Yang zeros in lattice QCD for searching phase transition points. Phys. Lett. B 2019, 793, 227–233. [Google Scholar] [CrossRef]
- Wakayama, M.; Nam, S.i.; Hosaka, A. Use of the canonical approach in effective models of QCD. Phys. Rev. D 2020, 102, 034035. [Google Scholar] [CrossRef]
- Wakayama, M.; Hosaka, A. Search of QCD phase transition points in the canonical approach of the NJL model. Phys. Lett. B 2019, 795, 548–553. [Google Scholar] [CrossRef]
- Kashiwa, K.; Kouno, H. Roberge-Weiss periodicity, canonical sector and modified Polyakov-loop. Phys. Rev. 2019, D100, 094023. [Google Scholar] [CrossRef] [Green Version]
- Ghoroku, K.; Kashiwa, K.; Nakano, Y.; Tachibana, M.; Toyoda, F. Extension to imaginary chemical potential in a holographic model. Phys. Rev. D 2020, 102, 046003. [Google Scholar] [CrossRef]
- Kashiwa, K.; Sasaki, T.; Kouno, H.; Yahiro, M. Two-color QCD at imaginary chemical potential and its impact on real chemical potential. Phys. Rev. 2013, D87, 016015. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, H.; Yonekura, K. Anomaly constraints on deconfinement and chiral phase transition. Phys. Rev. 2018, D97, 105011. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, Y. ’t Hooft Anomaly, Global Inconsistency, and Some of Their Applications. Ph.D. Thesis, Kyoto University, Kyoto, Japan, 2018. [Google Scholar]
- Nishimura, H.; Tanizaki, Y. High-temperature domain walls of QCD with imaginary chemical potentials. arXiv 2019, arXiv:1903.04014. [Google Scholar] [CrossRef] [Green Version]
- Weiss, N. How to Distinguish a Confining From a Deconfining Phase in Gauge Theories With Fermions. Phys. Rev. 1987, D35, 2495–2500. [Google Scholar] [CrossRef]
- D’Elia, M.; Sanfilippo, F. The Order of the Roberge-Weiss endpoint (finite size transition) in QCD. Phys. Rev. D 2009, 80, 111501. [Google Scholar] [CrossRef] [Green Version]
- Bonati, C.; Cossu, G.; D’Elia, M.; Sanfilippo, F. The Roberge-Weiss endpoint in Nf=2 QCD. Phys. Rev. 2011, D83, 054505. [Google Scholar]
- Bonati, C.; de Forcrand, P.; D’Elia, M.; Philipsen, O.; Sanfilippo, F. Chiral phase transition in two-flavor QCD from an imaginary chemical potential. Phys. Rev. 2014, D90, 074030. [Google Scholar] [CrossRef] [Green Version]
- Kashiwa, K.; Yahiro, M.; Kouno, H.; Matsuzaki, M.; Sakai, Y. Correlations among discontinuities in the QCD phase diagram. J. Phys. 2009, G36, 105001. [Google Scholar] [CrossRef] [Green Version]
- De Forcrand, P.; Philipsen, O. The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. 2002, B642, 290–306. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.W. Fourier’s series. Nature 1898, 59, 200. [Google Scholar] [CrossRef]
- Weiss, N. The Effective Potential for the Order Parameter of Gauge Theories at Finite Temperature. Phys. Rev. 1981, D24, 475. [Google Scholar] [CrossRef]
- Gross, D.J.; Pisarski, R.D.; Yaffe, L.G. QCD and Instantons at Finite Temperature. Rev. Mod. Phys. 1981, 53, 43. [Google Scholar] [CrossRef]
- Meisinger, P.N.; Ogilvie, M.C. Complete high temperature expansions for one loop finite temperature effects. Phys. Rev. D 2002, 65, 056013. [Google Scholar] [CrossRef] [Green Version]
- Kashiwa, K.; Pisarski, R.D. Roberge-Weiss transition and ’t Hooft loops. Phys. Rev. 2013, D87, 096009. [Google Scholar] [CrossRef] [Green Version]
- Ghiglieri, J.; Kurkela, A.; Strickland, M.; Vuorinen, A. Perturbative Thermal QCD: Formalism and Applications. Phys. Rept. 2020, 880, 1–73. [Google Scholar] [CrossRef]
- Aarts, G.; Seiler, E.; Sexty, D.; Stamatescu, I.O. Simulating QCD at nonzero baryon density to all orders in the hopping parameter expansion. Phys. Rev. 2014, D90, 114505. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K. Chiral effective model with the Polyakov loop. Phys. Lett. 2004, B591, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Roessner, S.; Ratti, C.; Weise, W. Polyakov loop, diquarks and the two-flavour phase diagram. Phys. Rev. 2007, D75, 034007. [Google Scholar]
- Bilgici, E.; Bruckmann, F.; Gattringer, C.; Hagen, C. Dual quark condensate and dressed Polyakov loops. Phys. Rev. 2008, D77, 094007. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.S. Deconfinement phase transition and the quark condensate. Phys. Rev. Lett. 2009, 103, 052003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashiwa, K.; Kouno, H.; Yahiro, M. Dual quark condensate in the Polyakov-loop extended NJL model. Phys. Rev. 2009, D80, 117901. [Google Scholar]
- Benič, S. Physical interpretation of the dressed Polyakov loop in the Nambu–Jona-Lasinio model. Phys. Rev. 2013, D88, 077501. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Mao, H.; Mukherjee, T.K.; Huang, M. Dressed Polyakov loop and flavor dependent phase transitions. Phys. Rev. 2011, D84, 074009. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, Y.; Lu, H. Dual meson condensates in the Polyakov-loop enhanced linear sigma model. Phys. Rev. D 2021, 103, 034017. [Google Scholar] [CrossRef]
- Kashiwa, K. Implications of imaginary chemical potential for model building of QCD. arXiv 2016, arXiv:1603.04958. [Google Scholar]
- Nakamura, T.; Hiraoka, Y.; Hirata, A.; Escolar, E.G.; Nishiura, Y. Persistent homology and many-body atomic structure for medium-range order in the glass. Nanotechnology 2015, 26, 304001. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, Y.; Nakamura, T.; Hirata, A.; Escolar, E.G.; Matsue, K.; Nishiura, Y. Hierarchical structures of amorphous solids characterized by persistent homology. Proc. Natl. Acad. Sci. USA 2016, 113, 7035–7040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, I.; Gori, M.; Pettini, M.; Petri, G.; De Nigris, S.; Franzosi, R.; Vaccarino, F. Persistent homology analysis of phase transitions. Phys. Rev. E 2016, 93, 052138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirakida, T.; Kashiwa, K.; Sugano, J.; Takahashi, J.; Kouno, H.; Yahiro, M. Persistent homology analysis of deconfinement transition in effective Polyakov-line model. Int. J. Mod. Phys. A 2020, 35, 2050049. [Google Scholar] [CrossRef]
- Kashiwa, K.; Hirakida, T.; Kouno, H. Persistent homology analysis for dense QCD effective model with heavy quarks. arXiv 2021, arXiv:2103.12554. [Google Scholar]
- Fukushima, K.; Skokov, V. Polyakov loop modeling for hot QCD. Prog. Part. Nucl. Phys. 2017, 96, 154–199. [Google Scholar] [CrossRef] [Green Version]
- Pisarski, R.D.; Skokov, V.V. How tetraquarks can generate a second chiral phase transition. Phys. Rev. D 2016, 94, 054008. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashiwa, K. Investigation of the Thermal QCD Matter from Canonical Sectors. Symmetry 2021, 13, 1273. https://doi.org/10.3390/sym13071273
Kashiwa K. Investigation of the Thermal QCD Matter from Canonical Sectors. Symmetry. 2021; 13(7):1273. https://doi.org/10.3390/sym13071273
Chicago/Turabian StyleKashiwa, Kouji. 2021. "Investigation of the Thermal QCD Matter from Canonical Sectors" Symmetry 13, no. 7: 1273. https://doi.org/10.3390/sym13071273