General Norm Inequalities of Trapezoid Type for Fréchet Differentiable Functions in Banach Spaces
Abstract
:1. Introduction
2. Some Identities of Interest
3. Main Results
4. Some Examples for Banach Algebras
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, R. Calculus on Normed Vector Spaces; Springer: New York, NY, USA, 2012. [Google Scholar]
- Dragomir, S.S. Integral inequalities for Lipschitzian mappings between two Banach spaces and applications. Kodai Math. J. 2016, 39, 227–251. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Cho, Y.J.; Kim, S.S. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 2000, 245, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs. 2000. Available online: http://rgmia.org/monographs/hermite_hadamard.html (accessed on 10 July 2021).
- Feng, Y.; Zhao, W. Refinement of Hermite-Hadamard inequality. Far East J. Math. Sci. 2012, 68, 245–250. [Google Scholar]
- Gao, X. A note on the Hermite-Hadamard inequality. J. Math. Inequal. 2010, 4, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-R.; Tseng, K.-L.; Hsu, K.-C. Hermite-Hadamard type and Fejér type inequalities for general weights (I). J. Inequal. Appl. 2013, 2013, 170. [Google Scholar] [CrossRef] [Green Version]
- Kırmacı, U.S.; Dikici, R. On some Hermite-Hadamard type inequalities for twice differentiable mappings and applications. Tamkang J. Math. 2013, 44, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Muddassar, M.; Bhatti, M.I.; Iqbal, M. Some new s-Hermite-Hadamard type inequalities for differentiable functions and their applications. Proc. Pakistan Acad. Sci. 2012, 49, 9–17. [Google Scholar]
- Matić, M.; Pečarić, J. Note on inequalities of Hadamard’s type for Lipschitzian mappings. Tamkang J. Math. 2001, 32, 127–130. [Google Scholar] [CrossRef]
- Sarikaya, M.Z. On new Hermite Hadamard Fejér type integral inequalities. Stud. Univ. Babeş-Bolyai Math. 2012, 57, 377–386. [Google Scholar]
- Wąsowicz, S.; Witkowski, A. On some inequality of Hermite-Hadamard type. Opuscula Math. 2012, 32, 591–600. [Google Scholar] [CrossRef]
- Xi, B.-Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Zabandan, G.; Bodaghi, A.; Kılıçman, A. The Hermite-Hadamard inequality for r-convex functions. J. Inequal. Appl. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.-J.; Cheung, W.-S.; Li, X.-Y. On the Hermite-Hadamard type inequalities. J. Inequal. Appl. 2013, 2013, 228. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.M. Bounds on the deviation of a function from its averages. Czechoslov. Math. J. 1992, 42, 298–310. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Univariate Ostrowski inequalities, revisited. Monatsh. Math. 2002, 135, 175–189. [Google Scholar] [CrossRef]
- Cerone, P.; Dragomir, S.S. Midpoint-type rules from an inequalities point of view. In Handbook of Analytic-Computational Methods in Applied Mathematics; Anastassiou, G.A., Ed.; CRC Press: New York, NY, USA, 2019; pp. 135–200. [Google Scholar]
- Cerone, P.; Dragomir, S.S. New bounds for the three-point rule involving the Riemann-Stieltjes integrals. In Advances in Statistics Combinatorics and Related Areas; Gulati, C., Ed.; World Science Publishing: Singapore, 2002; pp. 53–62. [Google Scholar]
- Cerone, P.; Dragomir, S.S.; Roumeliotis, J. Some Ostrowski type inequalities for n-time differentiable mappings and applications. Demonstr. Math. 1999, 32, 697–712. [Google Scholar]
- Ciurdariu, L. A note concerning several Hermite-Hadamard inequalities for different types of convex functions. Int. J. Math. Anal. 2012, 6, 1623–1639. [Google Scholar]
- Dragomir, S.S. Weighted norm inequalities of trapezoid type for Frechet differentiable functions in Banach spaces. RGMIA Res. Rep. Coll. 2020, 23, 19. Available online: https://rgmia.org/papers/v23/v23a22.pdf (accessed on 10 July 2021).
- Dragomir, S.S. Inequalities of Lipschitz type for power series in Banach algebras. Ann. Math. Sil 2015, 29, 61–83. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragomir, S.S. General Norm Inequalities of Trapezoid Type for Fréchet Differentiable Functions in Banach Spaces. Symmetry 2021, 13, 1288. https://doi.org/10.3390/sym13071288
Dragomir SS. General Norm Inequalities of Trapezoid Type for Fréchet Differentiable Functions in Banach Spaces. Symmetry. 2021; 13(7):1288. https://doi.org/10.3390/sym13071288
Chicago/Turabian StyleDragomir, Silvestru Sever. 2021. "General Norm Inequalities of Trapezoid Type for Fréchet Differentiable Functions in Banach Spaces" Symmetry 13, no. 7: 1288. https://doi.org/10.3390/sym13071288
APA StyleDragomir, S. S. (2021). General Norm Inequalities of Trapezoid Type for Fréchet Differentiable Functions in Banach Spaces. Symmetry, 13(7), 1288. https://doi.org/10.3390/sym13071288