Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras †
Abstract
:1. Introduction
1.1. Towards Quantum Gravity
1.2. Elements of Twistor Theory
1.3. Twist Deformations: From Space-Time to Twistors
2. Twisted Inhomogeneous Conformal Algebras, Born Duality and Palatial Twistors
2.1. From Poincaré to Inhomogeneous Conformal Algebras
2.2. Twist-Deformed Inhomogeneous Conformal Hopf Algebras and Holomorphic/Anti-Holomorphic Quantum Twistors
2.3. The Twisted Conformal Covariance of Quantum Twistors and Born Duality Map
3. Twistorial DSR Algebra as Deformed Smashed Product of and Twistorial Quantum Phase Space
3.1. Twistorial DSR (TDSR) Algebra
- (1)
- (2)
- by calculating for the quantum Hopf algebras and the Heisenberg double construction, which provides the generalized twistorial quantum phase space spanned by the quantum symmetry generators and the dual conformal quantum matrix group coordinates (for -deformed Poincaré– Heisenberg double see [11,51]; for -deformed Poincaré–Heisenberg double, see [52,53]).
3.2. De Sitter Twistors and Length/Mass Dimensionalities
3.3. Twist Deformation of Twistors by Drinfeld Twist
3.4. Heisenberg Doubles and Generalized Twistorial Quantum Phase Space
4. Outlook
- If we consider the twistor correspondence with complexified space-times, one should introduce the pair of dual twistors called ambitwistors, not linked by complex conjugation (Hermitian conjugation in quantized case), which provide the description of complex null geodesies in complexified Minkowski space [61,62,63]. In such a case, if , one can introduce the symplectic 2-form (see (13))
- The twistorial construction presented here can be quite easily generalized to and twistors, described by the and conformal groups and . We add that the conformal group can also be described as the antiunitary one [66,67]. In such a way, we deal with the antiunitary family of groups , where field F = R, C, H. In addition, since the 1970s, supertwistors [68] have been studied, which are a well recognized tool in the studies of superparticles, superstrings, supersymmetric gauge theories and supergravity.
- Various quantum deformations of and of its complexification have been used since the 1990s ([69,70,71,72]; see also [73]). One can recall that S. Zakrzewski, after classifying the Lorentz matrices [74], proposed the algebraic technique to classify the classical r-matrices of Poincaré algebras [75] After providing the classical SU(2,2) r-matrices, it should be possible to obtain also the r-matrices for inhomogeneous (pseudo) unitary algebras.
- Recently, the twistorial field-theoretic approach to formulate gauge theories and gravity in twistor space has been promoted (see, e.g., [76,77]), with the dynamics described by twistorial actions. By using local twistor geometry, one obtains in a natural way conformal gravity [78]; the twistorial model of Einstein gravity with non-zero cosmological constant can also be obtained by embedding into twistorial conformal gravity [76,77]. The formulation of QG in twistorial framework, by analogy with the approach presented in [5], may require as well the noncommutative twistorial quantum geometry.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oriti, D. (Ed.) Approaches to Quantum Gravity. In Collection of Papers; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background-independent quantum gravity: A status report. Class. Quant. Grav. 2004, 21, R53. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ambjorn, J.; Jurkiewicz, J.; Loll, R. Causal Dyamical Triangulations and the Quest for Quantum Gravity. In Foundations of Space-Time; Ellis, G., Murugen, J., Weltman, W., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Beggs, E.; Majid, S. Quantum Riemannian Geometry; Serie in Mathematics; Springer: Berlin/Heidelberg, Germany, 2020; Volume 355. [Google Scholar]
- Drinfeld, V.G. Quantum Groups. In Proceedings of the XXth Math. Congress, Berkeley, CA, USA, 3–11 August 1986; Berkeley Press: Berkeley, CA, USA, 1986; Volume 1, p. 798. [Google Scholar]
- Majid, S. Foundations of Quantum Groups Theory; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lu, J.-H. Hopf Algebroids and Quantum Grupoids. Int. J. Math. 1996, 7, 47–70. [Google Scholar] [CrossRef]
- Brzezinski, T.; Militaru, G. Bialgebroids. ×A-bialgebras and duality. J. Algebra 2002, 251, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Juric, T.; Kovacevic, D.; Meljanac, S. κ-deformed phase space, Hopf algebroid and twisting. SIGMA 2014, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Skoda, Z.; Woronowicz, M. κ-deformed covariant quantum phase spaces as Hopf algebroids. Phys. Lett. B 2015, 750, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Borowiec, A.; Pachol, A. Twisted bialgebroids versus bialgebroids from a Drinfeld twist. J. Phys. A Math. Theor. 2017, 50, 055205. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Meljanac, S.; Woronowicz, M. Quantum twist-deformed D = 4 phase spaces with spin sector and Hopf algebroid structures. Phys. Lett. B 2019, 789, 82–87. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 2002, 11, 35–59. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J. Observer-independent quanta of mass and length. Phys. Lett. A 2001, 286, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Kowalski-Glikman, J. Introduction to Doubly Special Relativity. In Planck Scale Effects in Astrophysics and Cosmology; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2005; Volume 669, pp. 131–159. [Google Scholar]
- Borowiec, A.; Pachol, A. κ-Minkowski space-times and DSR algebras: Fresh look and old Problems. SIGMA 2010, 6, 86. [Google Scholar] [CrossRef]
- Bronstein, M. Quantum theory of weak gravitational fields. JETP 1936, 9, 140157. [Google Scholar]
- Kowalski-Glikman, J.; Lee, S. Triply Special Relativity. Phys. Rev. D 2004, 70, 065020. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoy, V.N. q-deformation of Poincaré algebra. Phys. Lett. B 1991, 264, 331–338. [Google Scholar] [CrossRef]
- Ballesteros, A.; Herranz, F.; del Olmo, M.; Santander, M. A new null-plane quantum Poincaré algebra. Phys. Lett. B 1995, 351, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Majid, S.; Ruegg, H. Bicrossproduct structure of κ-Poincaré group and non-commutative geometry. Phys. Lett. B 1994, 3–4, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Twistor quantization and curved spacetime. Int. J. Theor. Phys. 1968, 1, 61–99. [Google Scholar] [CrossRef]
- Kapustin, A.; Kuznetzov, A.; Orlov, D. Noncommutative instantons and twistor transforms. Comm. Math. Phys. 2001, 221, 385–432. [Google Scholar] [CrossRef] [Green Version]
- Hannabus, K.C. Noncommutative twistor space. Lett. Math. Phys. 2001, 58, 153–166. [Google Scholar] [CrossRef]
- Brain, S.; Majid, S. Quantization of twistor theory by cocycle twist. Commun. Math. Phys. 2008, 284, 713. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Palatial twistor theory and the twistor googly problem. Philos. Trans. R. Soc. A 2015, 373, 20140237. [Google Scholar] [CrossRef] [PubMed]
- Lukierski, J.; Woronowicz, M. Noncommutative Space-Time from Quantized Twistors. In Proceedings of the Conference in Honour of 90th Birthday of Freeman Dyson, Singapore, 26–29 September 2013; Phua, K.K., Kwek, L.C., Chang, N.P., Chan, A.H., Eds.; World Scientific: Singapore, 2014; p. 407. [Google Scholar]
- Mercalli, M.; Penrose, R. Gluing noncommutative twistor space. Q. J. Math. 2021, 72, 417–454. [Google Scholar] [CrossRef]
- Penrose, R.; MacCallum, M.A.H. Twistor theory: An Approach to the quantization of fields and space-time. Phys. Rep. 1972, 6, 241–315. [Google Scholar] [CrossRef]
- Penrose, R. Nonlinear Gravitons and Curved Twistor Theory. Gen. Relativ. Gravit. 1976, 7, 31–52. [Google Scholar] [CrossRef]
- Atiyah, M.; Dunajski, M.; Mason, L. Twistor theory at fifty: From contour integrals to twistor strings. Proc. R. Soc. Lond. A 2017, 473, 20170530. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Kulish, P.P.; Nishijima, K.; Tureanu, A. On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT. Phys. Lett. B 2004, 604, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Lizzi, F.; Vitale, P. Twisting all the way: From Classical Mechanics to Quantum Fields. Phys. Rev. D 2008, 77, 025037. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Borowiec, A.; Pachol, A. Observables and dispersion relations in κ-Minkowski spacetime. JHEP 2017, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Doplicher, S.; Fredenhagen, K.; Roberts, J. Space-time quantization induced by classical gravity. Phys. Lett. B 1994, 331, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Doplicher, S.; Fredenhagen, K.; Roberts, J. The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 1995, 172, 187–220. [Google Scholar] [CrossRef] [Green Version]
- Drinfeld, V.G. Quasi-Hopf algebras. Algebra i Anal. 1989, 1, 114. (In Russian) [Google Scholar]
- Born, M. Reciprocity theory of elementary particles. Rev. Mod. Phys. 1949, 21, 463. [Google Scholar] [CrossRef] [Green Version]
- Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. The Theory of metaparticles. Phys. Rev. D 2019, 99, 066011. [Google Scholar] [CrossRef] [Green Version]
- Bogolyubov, N.N. On a new method in the theory of superconductivity. Nuovo Cim. 1958, 7, 794–805. [Google Scholar] [CrossRef]
- Majid, S.; Schroers, B.J. q-Deformation and Semidualisation in 3d Quantum Gravity. J. Phys. A 2009, 42, 425402. [Google Scholar] [CrossRef]
- Osei, P.K.; Schroers, B.J. On the semiduals of local isometry groups in 3rd gravity. J. Math. Phys. 2012, 53, 073510. [Google Scholar] [CrossRef] [Green Version]
- Osei, P.K.; Schroers, B.J. Classical r-matrices via selfdualisation. J. Math. Phys. 2013, 54, 101702. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38. [Google Scholar] [CrossRef]
- Klimyk, A.; Schmudgen, K. Quantum Groups and Their Representations; Springer: Berlin, Germany, 1997. [Google Scholar]
- Blattner, R.; Cohen, M.; Montgomery, S. Crossed products and inner actions of Hopf algebras. Trans. Am. Math. Soc. 1986, 298, 671–711. [Google Scholar] [CrossRef]
- Girelli, F.; Livine, E.R. Scalar field theory in Snyder space-time: Algernatives. JHEP 2011, 1103, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Meljanac, S.; Pachol, A. Heisenberg doubles for Snyder type models. arXiv 2021, arXiv:2101.02512. [Google Scholar]
- Meljanac, S.; Mignemi, S. Unification of κ-Minkowski and extended Snyder spaces. Phys. Lett. B 2021, 814, 136117. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A. Heisenberg Double Description of κ-Poincaré Algebra and κ-deformed Phase Space. In Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics; Goslar, Germany, 15–20 July 1996, Dobrev, V.K., Doebner, H.D., Eds.; Heron Press: Sofia, Bulgaria, 1997; p. 186. [Google Scholar]
- Borowiec, A.; Pachol, A. Heisenberg Doubles of Quantized Poincaré algebras. Theor. Math. Phys. 2011, 169, 1620–1628. [Google Scholar] [CrossRef]
- Lukierski, J.; Woronowicz, M. Two θμν-deformed covariant relativistic phase spaces as Poincaré -Hopf algebroids. Phys. Rev. D 2020, 101, 126003. [Google Scholar] [CrossRef]
- Beggs, E.; Majid, S. Nonassociative Riemann geometry by twisting. J. Phys. Conf. Ser. 2010, 254, 012002. [Google Scholar] [CrossRef] [Green Version]
- Beggs, E.J.; Majid, S. Quantizaton by cochain twists and nonassociative differentials. J. Math. Phys. 2010, 51, 05322. [Google Scholar] [CrossRef] [Green Version]
- Bandos, I.; Lukierski, J.; Sorokin, D. Superparticle models with tensorial central charges. Phys. Rev. D 2000, 61, 045002. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, M.A. Higher-Spin Theories and Sp(2M) Invariant Space-Time. In Proceedings of the 3rd Sakharov Conference, Moscow, Russia, 24–29 June 2002. [Google Scholar]
- Vasiliev, M.A. Higher Spin Superalgebras in any Dimension and their Representations. JHEP 2004, 0412, 046. [Google Scholar] [CrossRef] [Green Version]
- Bulacu, D.; Panaite, F.; Van Oystaeyen, F. Quasi-Hopf algebra actions and smash products. Commun. Algebra 2000, 28, 631–651. [Google Scholar] [CrossRef]
- Kosiński, P.; Maślanka, P. The kappa-Weyl group and its algebra. In From Quantum Field Theory to Quantum Groups; Jancewicz, B., Sobczyk, J., Eds.; World Scientific Publishing Company: Singapore, 2006; p. 41. [Google Scholar]
- LeBrun, C. Spaces of complex null geodesics in complex Riemannian geometry. Trans. Am. Math. Soc. 1983, 278, 209–231. [Google Scholar] [CrossRef]
- Geyer, Y.; Lipstein, A.E.; Mason, L.J. Ambitwistor Strings in Four Dimensions. Phys. Rev. Lett. 2014, 113, 081602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baston, R.J.; Mason, L.J. Conformal Gravity, the Einstein Equations and Spaces of Complex Null Geodesics. Class. Quant. Grav. 1987, 4, 815. [Google Scholar] [CrossRef]
- Freidel, L.; Rudolph, F.J.; Svoboda, D. A Unique Connection for Born Geometry. Commun. Math. Phys. 2019, 372, 119–150. [Google Scholar] [CrossRef] [Green Version]
- Govaerts, J.; Jarvis, P.D.; Morgan, S.O.; Low, S.G. World-line quantisation of a reciprocally invariant system. J. Phys. A 2007, 40, 12095. [Google Scholar] [CrossRef]
- Tits, J. Tabellen zu den Einfachen Lie Gruppen und Ihren Darstellungen; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1987; Volume 40. [Google Scholar]
- Lukierski, J.; Nowicki, A. Quaternionic Supergroups and D = 4 Euclidean Extended Supersymmetries. Ann. Phys. 1986, 166, 164–188. [Google Scholar] [CrossRef]
- Ferber, A. Supertwistors and conformal supersymmetry. Nucl. Phys. B 1978, 132, 55–64. [Google Scholar] [CrossRef]
- Dobrev, V. Quantum deformations of noncompact Lie (super)algebras, Gottingen Univ. preprint, July 1991. J. Phys. A 1993, 26, 1317. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A. Quantum deformations of D = 4 Poincaré and Weyl algebra from q-deformed D = 4 conformal algebra. Phys. Lett. B 1992, 279, 299–307. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A.; Sobczyk, J. All real forms of Uq(sl(4;C)) and D = 4 conformal quantum algebras. J. Phys. A 1993, 26, 4047. [Google Scholar] [CrossRef]
- Frydryszak, A.; Lukierski, J.; Mozrzymas, M.; Minnaert, P. On Quantum Deformations of D = 4 Conformal Algebra. In Proceedings of the VII-th Colloquium in Quantum Groups and Integrable Systems, Prague, Czech Republic, 18–20 June 1998. [Google Scholar] [CrossRef] [Green Version]
- Tolstoy, V.N. Twisted quantum deformations of Lorentz and Poincaré algebra. Bulg. J. Phys. 2008, 35, 441–459. [Google Scholar]
- Zakrzewski, S. Poisson structures on the Lorentz group. Lett. Math. Phys. 1994, 32, 11. [Google Scholar] [CrossRef]
- Zakrzewski, S. Poisson structures on the Poincaré groups. Commun. Math. Phys. 1997, 185, 285–311. [Google Scholar] [CrossRef] [Green Version]
- Adamo, T.; Mason, L. Conformal and Einstein Gravity from twistor action. Class. Quant. Grav. 2014, 31, 045014. [Google Scholar] [CrossRef]
- Adamo, T. Twistor Actions for Gauge Theory and Gravity. Ph.D. Thesis, University of Oxford, Oxford, UK, 2013. [Google Scholar]
- Howe, P.S.; Lindström, U. Superconformal geometries and local twistors. arXiv 2020, arXiv:2012.03282. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukierski, J. Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras. Symmetry 2021, 13, 1309. https://doi.org/10.3390/sym13081309
Lukierski J. Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras. Symmetry. 2021; 13(8):1309. https://doi.org/10.3390/sym13081309
Chicago/Turabian StyleLukierski, Jerzy. 2021. "Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras" Symmetry 13, no. 8: 1309. https://doi.org/10.3390/sym13081309
APA StyleLukierski, J. (2021). Palatial Twistors from Quantum Inhomogeneous Conformal Symmetries and Twistorial DSR Algebras. Symmetry, 13(8), 1309. https://doi.org/10.3390/sym13081309