A New Generation of Neutrino Cross Section Experiments: Challenges and Opportunities
Abstract
:1. Introduction
2. The Current Generation of Cross Section Experiments and Their Impact on Neutrino Oscillations
2.1. Standard Candles
2.2. Neutrino-Nucleus Scattering
2.3. Quasielastic Region and the Axial Mass
2.4. Pion Production and the Resonance Region
2.5. Biases in the Determination of Oscillation Parameters
2.6. Open Issues in the Theoretical Understanding of Cross Sections
- The giant resonances, neglected by many theoretical models, contribute to the cross Section [102];
3. Learning from the Next Generation of Near Detectors
- SAND: an on-axis detector based on the KLOE magnet and calorimeter complemented by a low-density tracker;
- ND-LAr: a non-magnetized liquid argon TPC capable to stand the high neutrino rate of the DUNE beam;
- TMS: a muon catcher that closes the kinematics of CC events in the liquid argon. In a second stage, this muon catcher will be replaced by a magnetized high-pressure argon TPC (ND-GAr) inside a superconducting solenoid.
4. A New Generation of Neutrino Beams
4.1. Monitored Neutrino Beams
4.2. Tagged Neutrino Beams
4.3. Muon Beams
5. A New Generation of Neutrino-Beam Detectors
6. A Graded Strategy toward High-Precision Neutrino Physics
- Even in the most precise measurements (see for instance Figure 1) the flux uncertainty contribute to a large fraction of the systematic uncertainty. Double-differential cross section measurements are not yet systematically limited but the DUNE and HK near detectors of Section 3 will soon reach this limit. A percent knowledge of the flux is, then, mandatory to reduce the systematic uncertainty once statistical errors will be lower than 10%. The use of standard candles mitigates this issue but the most desirable solution is a flux measurement independent of the neutrino detector.
- The use of non-monochromatic beams is the root of the model dependence of cross section results. Major advances have been achieved once experimenters became aware of the theory priors implicit in the definition of QE, RES, and DIS events (see for instance Section 2.3). Still, the use of a narrow band beam is mandatory to decouple interaction modeling from experimental data and reduce the systematic budget due to the energy-integrated flux and the bias coming from energy reconstruction. The PRISM technique is an important mitigation tool. Once more, the ideal solution is a narrow band beam where the neutrino energy is measured with % precision independently from the detector reconstruction.
- The decoupling of cross section and detector efficiency is a major experimental challenge. It is not strictly necessary for long-baseline experiments but it plagues the interpretation of experimental data for model building. Decoupling can be achieved by combining high- and low-density detectors using the same nuclei. On the other hand, the construction of realistic models of neutrino interactions requires a deeper understanding of low-Z nuclear effects. The use of hydrogen or deuterated materials would be a major asset for electroweak nuclear physics and the study of nuclear media and, in turn, would impact the precision of oscillation measurements.
- The construction of an intense beam is extremely valuable to test lepton universality and ground the and oscillation measurements. Beams like ENUBET can provide measurements at the percent level, which fulfill the needs of DUNE and HK, but double-differential CC measurements require novel muon beams like nuSTORM.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mezzetto, M.; Terranova, F. Three-flavour oscillations with accelerator neutrino beam. Universe 2020, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Abi1, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; et al. Volume I. Introduction to DUNE. J. Instrum. 2020, 15, T08008. [Google Scholar] [CrossRef]
- Abe, K.; Abe, K.; Aihara, H.; Aimi, A.; Akutsu, R.; Andreopoulos, C.; Anghel, I.; Anthony, L.H.V.; Antonova, M.; Ashida, Y.; et al. Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- Katori, T.; Martini, M. Neutrino–nucleus cross sections for oscillation experiments. J. Phys. G 2018, 45, 013001. [Google Scholar] [CrossRef]
- An, F.P.; Bai, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R.L.; et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.K.; Chebotaryov, S.; Choi, J.H.; Choi, S.; Choi, W.; Choi, Y.; Jang, H.I.; Jang, J.S.; Jeon, E.J.; Jeong, I.S.; et al. Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. Phys. Rev. Lett. 2012, 108, 191802. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Aberle, C.; Akiri, T.; dos Anjos, J.C.; Ardellier, F.; Barbosa, A.F.; Baxter, A.; Bergevin, M.; Bernstein, A.; Bezerra, T.J.C.; et al. Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment. Phys. Rev. Lett. 2012, 108, 131801. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; et al. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam. Phys. Rev. Lett. 2014, 112, 061802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Alonso Monsalve, S.; et al. Long-baseline neutrino oscillation physics potential of the DUNE experiment. Eur. Phys. J. C 2020, 80, 978. [Google Scholar] [CrossRef]
- Abud, A.A.; Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Aduszkiewicz, A.; Ahmad, Z.; Ahmed, J.; et al. Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report. arXiv 2021, arXiv:2103.13910. [Google Scholar]
- Abe, K.; Aihara, H.; Ajmi, A.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Asada, Y.; Ashida, Y.; Atherton, A.; Atkin, E.; et al. T2K ND280 Upgrade-Technical Design Report. arXiv 2019, arXiv:1901.03750. [Google Scholar]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Alonso Monsalve, S.; et al. Volume IV. The DUNE far detector single-phase technology. JINST 2020, 15, T08010. [Google Scholar] [CrossRef]
- Ellis, R.K.; Heinemann, B.; de Blas, J.; Cepeda, M.; Grojean, C.; Maltoni, F.; Nisati, A.; Petit, E.; Rattazzi, R.; Verkerke, W.; et al. Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020; Technical Report CERN-ESU-004; CERN: Geneva, Swizterland, 2019; 254p. [Google Scholar]
- Atar, M.S.; Singh, S.K. The Physics of Neutrino Interactions; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Alcaraz-Aunion, J.L.; Walding, J. Measurement of the nu(mu)-CCQE cross-section in the SciBooNE experiment. AIP Conf. Proc. 2009, 1189, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, P.A.; Demgen, J.; Miltenberger, E.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; et al. Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer. Phys. Rev. Lett. 2016, 116, 071802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; Bagby, L.; Bellantoni, L.; Bergan, W.F.; Bodek, A.; Bradford, R.; Bravar, A.; Budd, H.; et al. MINERvA neutrino detector response measured with test beam data. Nucl. Instrum. Meth. 2015, A789, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Pintaudi, G. T2K-WAGASCI: First physics run of the WAGASCI-BabyMIND detector with full setup. PoS 2019, 2019, 142. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Basque, V.; Bolton, T.; Bromberg, C.; Cavanna, F.; Edmunds, D.; Fitzpatrick, R.S.; et al. First measurement of electron neutrino scattering cross section on argon. Phys. Rev. D 2020, 102, 011101. [Google Scholar] [CrossRef]
- Gran, R.; Jeon, E.J.; Aliu, E.; Andringa, S.; Aoki, S.; Argyriades, J.; Asakura, K.; Ashie, R.; Berghaus, F.; Berns, H.; et al. Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions. Phys. Rev. 2006, D74, 052002. [Google Scholar] [CrossRef] [Green Version]
- Evans, J. The MINOS experiment: Results and prospects. Adv. High Energy Phys. 2013, 2013, 182537. [Google Scholar] [CrossRef]
- Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; et al. Measurement of the νμ charged-current quasielastic cross section on carbon with the ND280 detector at T2K. Phys. Rev. 2015, D92, 112003. [Google Scholar] [CrossRef] [Green Version]
- Acero, M.A.; Adamson, P.; Agam, G.; Aliaga, L.; Alion, T.; Allakhverdian, V.; Anfimov, N.; Antoshkin, A.; Asquith, L.; Aurisano, A.; et al. Adjusting neutrino interaction models and evaluating uncertainties using NOvA near detector data. Eur. Phys. J. C 2020, 80, 1119. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A.; Brown, B.C.; Bugel, L.; Cheng, G.; Church, E.D.; Conrad, J.M.; Dharmapalan, R.; Djurcic, Z.; Finley, D.A.; Ford, R.; et al. First measurement of the muon antineutrino double-differential charged-current quasielastic cross section. Phys. Rev. D 2013, 88, 032001. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section. Phys. Rev. 2010, D81, 092005. [Google Scholar] [CrossRef] [Green Version]
- Abratenko, P.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. First Measurement of Differential Charged Current Quasielastic-like νμ-Argon Scattering Cross Sections with the MicroBooNE Detector. Phys. Rev. Lett. 2020, 125, 201803. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; et al. Design and Construction of the MicroBooNE Detector. JINST 2017, 12, P02017. [Google Scholar] [CrossRef]
- Dracos, M.; Baussan, E.; Bouquerel, E.; Ekelof, T.; Kayis Topaksu, A. The ESSνSB Project. In Proceedings of the 21st International Workshop on Neutrinos from Accelerators—PoS(NuFact2019), Daegu, Korea, 26–31 August 2020; Volume 369, p. 024. [Google Scholar] [CrossRef]
- Alekou, A.; Baussan, E.; Kraljevic, N.B.; Blennow, M.; Bogomilov, M.; Bouquerel, E.; Burgman, A.; Carlile, C.J.; Cederkall, J.; Christiansen, P.; et al. Updated physics performance of the ESSnuSB experiment. arXiv 2021, arXiv:2107.07585. [Google Scholar]
- Acerbi, F.; Ballerini, G.; Bonesini, M.; Brizzolari, C.; Brunetti, G.; Calviani, M.; Carturan, S.; Catanesi, M.G.; Cecchini, S.; Cindolo, F.; et al. The ENUBET project. In Technical Report CERN-SPSC-2018-034. SPSC-I-248; CERN: Geneva, Swizterland, 2018. [Google Scholar]
- Adey, D.; Agarwalla, S.K.; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; et al. nuSTORM—Neutrinos from STORed Muons: Proposal to the Fermilab PAC. arXiv 2013, arXiv:1308.6822. [Google Scholar]
- Huber, P.; Mezzetto, M.; Schwetz, T. On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments. J. High Energy Phys. 2008, 2008, 021. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Bachmann, K.; Blair, R.; Foudas, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; et al. Inverse Muon Decay, νμe→μ−νe, at the Fermilab Tevatron. Phys. Lett. B 1990, 252, 170–176. [Google Scholar] [CrossRef]
- Dorenbosch, J.; Udo, F.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baubillier, M.; Bergsma, F.; Capone, A.; Flegel, W.; Grancagnolo, F.; et al. Experimental results on neutrino-electron scattering. Z. Phys. C 1989, 41, 567–589. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.M.; McFarland, K.S.; Wilkinson, C. Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 2020, 101, 032002. [Google Scholar] [CrossRef] [Green Version]
- Valencia, E.; Jena, D.; Nuruzzaman; Akbar, F.; Aliaga, L.; Andrade, D.A.; Ascencio, M.V.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; et al. Constraint of the MINERνA medium energy neutrino flux using neutrino-electron elastic scattering. Phys. Rev. D 2019, 100, 092001. [Google Scholar] [CrossRef] [Green Version]
- Kronfeld, A.S.; Richards, D.G.; Detmold, W.; Detmold, W.; Gupta, R.; Lin, H.W.; Liu, K.F.; Meyer, A.S.; Sufian, R.; Syritsyn, S.; et al. Lattice QCD and Neutrino-Nucleus Scattering. Eur. Phys. J. A 2019, 55, 196. [Google Scholar] [CrossRef]
- Miller, L.; Barish, S.J.; Engler, A.; Kraemer, R.W.; Stacey, B.J.; Derrick, M.; Fernandez, E.; Hyman, L.; Levman, G.; Koetke, D.; et al. Study of the Reaction muon-neutrino D —> MU- P P(S). Phys. Rev. D 1982, 26, 537–542. [Google Scholar] [CrossRef]
- Baker, N.J.; Cnops, A.M.; Connolly, P.L.; Kahn, S.A.; Kirk, H.G.; Murtagh, M.J.; Palmer, R.B.; Samios, N.P.; Tanaka, M. Quasielastic Neutrino Scattering: A Measurement of the Weak Nucleon Axial Vector Form-Factor. Phys. Rev. 1981, D23, 2499–2505. [Google Scholar] [CrossRef]
- Kitagaki, T.; Tanaka, S.; Yuta, H.; Abe, K.; Hasegawa, K.; Yamaguchi, A.; Tamai, K.; Hayashino, T.; Otani, Y.; Hayano, H.; et al. High-Energy Quasielastic Muon-neutrino n —> mu- p Scattering in Deuterium. Phys. Rev. 1983, D28, 436–442. [Google Scholar] [CrossRef]
- Baussan, E.; Blennow, M.; Bogomilov, M.; Bouquerel, E.; Caretta, O.; Cederkall, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; et al. A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac. Nucl. Phys. B 2014, 885, 127–149. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Bernard, V.; Elouadrhiri, L.; Meissner, U.G. Axial structure of the nucleon: Topical Review. J. Phys. 2002, G28, R1–R35. [Google Scholar] [CrossRef] [Green Version]
- Mann, W.A.; Mehtani, U.; Musgrave, B.; Oren, Y.; Schreiner, P.A.; Singer, R.; Yuta, H.; Ammar, R.; Barish, S.; Cho, Y.; et al. Study of the reaction nu n —> mu- p. Phys. Rev. Lett. 1973, 31, 844–847. [Google Scholar] [CrossRef]
- Barish, S.J.; Campbell, J.; Charlton, G.; Cho, Y.; Derrick, M.; Engelmann, R.; Hyman, L.G.; Jankowski, D.; Mann, A.; Musgrave, B.; et al. Study of Neutrino Interactions in Hydrogen and Deuterium. 1. Description of the Experiment and Study of the Reaction Neutrino d –> mu- p p(s). Phys. Rev. 1977, D16, 3103. [Google Scholar] [CrossRef]
- Lyubushkin, V.; Popov, B.; Kim, J.J.; Camilleri, L.; Levy, J.M.; Mezzetto, M.; Naumov, D.; Alekhin, S.; Astier, P.; Autiero, D.; et al. A Study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment. Eur. Phys. J. 2009, C63, 355–381. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, Y.; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; et al. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam. Phys. Rev. 2011, D83, 012005. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ruso, L. Neutrino interactions: Challenges in the current theoretical picture. Nucl. Phys. Proc. Suppl. 2012, 229–232, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Ericson, M.; Chanfray, G.; Marteau, J. A Unified approach for nucleon knock-out, coherent and incoherent pion production in neutrino interactions with nuclei. Phys. Rev. 2009, C80, 065501. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G.J.; Barr, G.; et al. Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam. Phys. Rev. 2016, D93, 112012. [Google Scholar] [CrossRef] [Green Version]
- Ruterbories, D.; Hurtado, K.; Osta, J.; Akbar, F.; Aliaga, L.; Andrade, D.A.; Ascencio, M.V.; Bashyal, A.; Bercellie, A.; Betancourt, M.; et al. Measurement of Quasielastic-Like Neutrino Scattering at 〈Eν 〉 ∼3.5 GeV on a Hydrocarbon Target. Phys. Rev. D 2019, 99, 012004. [Google Scholar] [CrossRef] [Green Version]
- Abratenko, P.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. Measurement of differential cross sections for νμ-Ar charged-current interactions with protons and no pions in the final state with the MicroBooNE detector. Phys. Rev. D 2020, 102, 112013. [Google Scholar] [CrossRef]
- Martini, M.; Ericson, M.; Chanfray, G.; Marteau, J. et al. Neutrino and antineutrino quasielastic interactions with nuclei. Phys. Rev. 2010, C81, 045502. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J.; Ruiz Simo, I.; Vicente Vacas, M. The nucleon axial mass and the MiniBooNE Quasielastic Neutrino-Nucleus Scattering problem. Phys. Lett. 2012, B707, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J.; Sánchez, F.; Simo, I.R.; Vacas, M.J.V. Neutrino energy reconstruction and the shape of the charged current quasielastic-like total cross section. Phys. Rev. D 2012, 85, 113008. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ruso, L.; Athar, M.S.; Barbaro, M.B.; Cherdack, D.; Christy, M.E.; Coloma, P.; Donnelly, T.W.; Dytman, S.; de Gouvea, A.; Hill, R.J.; et al. NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys. 2018, 100, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Rein, D.; Sehgal, L.M. Coherent pi0 Production in Neutrino Reactions. Nucl. Phys. 1983, B223, 29. [Google Scholar] [CrossRef]
- Abe, K.; Adam, J.; Aihara, H.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G.J.; et al. Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 π0 detector. Phys. Rev. 2015, D91, 112010. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; et al. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector. Phys. Rev. Lett. 2014, 113, 241803. [Google Scholar] [CrossRef] [Green Version]
- Wolcott, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; et al. Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at 〈Eν〉 = 3.6 GeV. Phys. Rev. Lett. 2016, 116, 081802. [Google Scholar] [CrossRef]
- Abe, K.; Akhlaq, N.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; et al. Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280. JHEP 2020, 10, 114. [Google Scholar] [CrossRef]
- Abratenko, P.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. Measurement of the Flux-Averaged Inclusive Charged-Current Electron Neutrino and Antineutrino Cross Section on Argon using the NuMI Beam and the MicroBooNE Detector. arXiv 2021, arXiv:2101.04228. [Google Scholar]
- Day, M.; McFarland, K.S. Differences in Quasi-Elastic Cross-Sections of Muon and Electron Neutrinos. Phys. Rev. 2012, D86, 053003. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Martinez, E.; Meloni, D. Importance of nuclear effects in the measurement of neutrino oscillation parameters. Phys. Lett. 2011, B697, 477–481. [Google Scholar] [CrossRef]
- Charitonidis, N.; Longhin, A.; Pari, M.; Parozzi, E.G.; Terranova, F. Design and Diagnostics of High-Precision Accelerator Neutrino Beams. Appl. Sci. 2021, 11, 1644. [Google Scholar] [CrossRef]
- Martini, M.; Ericson, M.; Chanfray, G. Neutrino energy reconstruction problems and neutrino oscillations. Phys. Rev. 2012, D85, 093012. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Ericson, M.; Chanfray, G. Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis. Phys. Rev. 2013, D87, 013009. [Google Scholar] [CrossRef] [Green Version]
- Lalakulich, O.; Mosel, U.; Gallmeister, K. Energy reconstruction in quasielastic scattering in the MiniBooNE and T2K experiments. Phys. Rev. 2012, C86, 054606. [Google Scholar] [CrossRef] [Green Version]
- Ankowski, A.M.; Mariani, C. Systematic uncertainties in long-baseline neutrino-oscillation experiments. J. Phys. 2017, G44, 054001. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Ericson, M.; Chanfray, G. Neutrino quasielastic interaction and nuclear dynamics. Phys. Rev. 2011, C84, 055502. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Ericson, M. Quasielastic and multinucleon excitations in antineutrino-nucleus interactions. Phys. Rev. 2013, C87, 065501. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Ericson, M. Inclusive and pion production neutrino-nucleus cross sections. Phys. Rev. 2014, C90, 025501. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N. Electron-neutrino scattering off nuclei from two different theoretical perspectives. Phys. Rev. 2016, C94, 015501. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J.; Ruiz Simo, I.; Vicente Vacas, M. Two Particle-Hole Excitations in Charged Current Quasielastic Antineutrino–Nucleus Scattering. Phys. Lett. 2013, B721, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Bourguille, B.; Nieves, J.; Sánchez, F. Inclusive and exclusive neutrino-nucleus cross sections and the reconstruction of the interaction kinematics. JHEP 2021, 4, 004. [Google Scholar] [CrossRef]
- Megias, G.; Amaro, J.; Barbaro, M.; Caballero, J.A.; Donnelly, T.W.; Ruiz Simo, I. Charged-current neutrino-nucleus reactions within the superscaling meson-exchange current approach. Phys. Rev. 2016, D94, 093004. [Google Scholar] [CrossRef] [Green Version]
- Megias, G.D.; Barbaro, M.B.; Caballero, J.A.; Amaro, J.E.; Donnelly, T.W.; Ruiz Simo, I.; Van Orden, J.W. Neutrino-Oxygen CC0π scattering in the SuSAv2-MEC model. J. Phys. G 2019, 46, 015104. [Google Scholar] [CrossRef] [Green Version]
- Megias, G.D.; Barbaro, M.B.; Caballero, J.A.; Dolan, S. Analysis of the MINERvA antineutrino double-differential cross sections within the SuSAv2 model including meson-exchange currents. Phys. Rev. D 2019, 99, 113002. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, M.V.; Antonov, A.N.; Megias, G.D.; Caballero, J.A.; Barbaro, M.B.; Amaro, J.E.; Ruiz Simo, I.; Donnelly, T.W.; Udías, J.M. Realistic spectral function model for charged-current quasielastic-like neutrino and antineutrino scattering cross sections on 12C. Phys. Rev. C 2019, 99, 014610. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, M.B.; De Pace, A.; Fiume, L. The SuSA Model for Neutrino Oscillation Experiments: From Quasielastic Scattering to the Resonance Region. Universe 2021, 7, 140. [Google Scholar] [CrossRef]
- Lalakulich, O.; Gallmeister, K.; Mosel, U. Many-Body Interactions of Neutrinos with Nuclei-Observables. Phys. Rev. 2012, C86, 014614. [Google Scholar] [CrossRef]
- Gallmeister, K.; Mosel, U.; Weil, J. Neutrino-Induced Reactions on Nuclei. Phys. Rev. 2016, C94, 035502. [Google Scholar] [CrossRef] [Green Version]
- Mosel, U.; Gallmeister, K. Muon-neutrino-induced charged current cross section without pions: Theoretical analysis. Phys. Rev. C 2018, 97, 045501. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Jachowicz, N.; Van Cuyck, T.; Ryckebusch, J.; Martini, M. Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation. Phys. Rev. 2015, C92, 024606. [Google Scholar] [CrossRef] [Green Version]
- Van Cuyck, T.; Jachowicz, N.; González-Jiménez, R.; Martini, M.; Pandey, V.; Ryckebusch, J.; Van Dessel, N. Influence of short-range correlations in neutrino-nucleus scattering. Phys. Rev. 2016, C94, 024611. [Google Scholar] [CrossRef] [Green Version]
- Van Cuyck, T.; Jachowicz, N.; González-Jiménez, R.; Ryckebusch, J.; Van Dessel, N. Seagull and pion-in-flight currents in neutrino-induced 1N and 2N knockout. Phys. Rev. C 2017, 95, 054611. [Google Scholar] [CrossRef] [Green Version]
- Lovato, A.; Carlson, J.; Gandolfi, S.; Rocco, N. and Schiavilla, R. Ab initio study of (νℓ,ℓ−) and (ν¯ℓ,ℓ+) inclusive scattering in 12C: Confronting the MiniBooNE and T2K CCQE data. Phys. Rev. X 2020, 10, 031068. [Google Scholar] [CrossRef]
- Abe, K.; Amey, J.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; Ashida, Y.; Ban, S.; Barbi, M.; et al. First measurement of the νμ charged-current cross section on a water target without pions in the final state. Phys. Rev. D 2018, 97, 012001. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; Ashida, Y.; et al. First measurement of the charged current ν¯μ double differential cross section on a water target without pions in the final state. Phys. Rev. D 2020, 102, 012007. [Google Scholar] [CrossRef]
- Abe, K.; Akhlaq, N.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; et al. First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K. Phys. Rev. D 2020, 101, 112001. [Google Scholar] [CrossRef]
- Abe, K.; Akhlaq, N.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; et al. Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K. Phys. Rev. D 2020, 101, 112004. [Google Scholar] [CrossRef]
- Carneiro, M.F.; Ruterbories, D.; Ahmad Dar, Z.; Akbar, F.; Andrade, D.A.; Ascencio, M.V.; Badgett, W.; Bashyal, A.; Bercellie, A.; Betancourt, M.; et al. High-Statistics Measurement of Neutrino Quasielasticlike Scattering at 6 GeV on a Hydrocarbon Target. Phys. Rev. Lett. 2020, 124, 121801. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J.; Ruiz Simo, I.; Vicente Vacas, M. Inclusive Charged–Current Neutrino–Nucleus Reactions. Phys. Rev. 2011, C83, 045501. [Google Scholar] [CrossRef] [Green Version]
- Andreopoulos, C.; Bell, A.; Bhattacharya, D.; Cavanna, F.; Dobson, J.; Dytman, S.; Gallagher, H.; Guzowski, P.; Hatcher, R.; Kehayias, P.; et al. The GENIE Neutrino Monte Carlo Generator. Nucl. Instrum. Meth. 2010, A614, 87–104. [Google Scholar] [CrossRef] [Green Version]
- Hayato, Y. A neutrino interaction simulation program library NEUT. Acta Phys. Polon. 2009, B40, 2477–2489. [Google Scholar]
- Golan, T.; Juszczak, C.; Sobczyk, J.T. Final State Interactions Effects in Neutrino-Nucleus Interactions. Phys. Rev. 2012, C86, 015505. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Amey, J.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; Ashida, Y.; Azuma, Y.; Ban, S.; et al. Measurement of inclusive double-differential νμ charged-current cross section with improved acceptance in the T2K off-axis near detector. Phys. Rev. D 2018, 98, 012004. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J.B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; et al. Measurement of the inclusive νμ charged current cross section on carbon in the near detector of the T2K experiment. Phys. Rev. 2013, D87, 092003. [Google Scholar] [CrossRef] [Green Version]
- Ankowski, A.M. Effect of the charged-lepton’s mass on the quasielastic neutrino cross sections. Phys. Rev. C 2017, 96, 035501. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, A.; Jachowicz, N.; Van Dessel, N.; Niewczas, K.; González-Jiménez, R.; Udías, J.M.; Pandey, V. Electron versus Muon Neutrino Induced Cross Sections in Charged Current Quasielastic Processes. Phys. Rev. Lett. 2019, 123, 052501. [Google Scholar] [CrossRef] [PubMed]
- González-Jiménez, R.; Nikolakopoulos, A.; Jachowicz, N.; Udías, J.M. Nuclear effects in electron-nucleus and neutrino-nucleus scattering within a relativistic quantum mechanical framework. Phys. Rev. C 2019, 100, 045501. [Google Scholar] [CrossRef]
- Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R. and Ryckebusch, J. and Van Cuyck, T. and Van Dessel, N.; et al. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics. Phys. Rev. 2016, C94, 054609. [Google Scholar] [CrossRef] [Green Version]
- Delorme, J.; Ericson, M. Exploration of the Spin-Isospin Nuclear Response Function by Neutrinos. Phys. Lett. 1985, B156, 263. [Google Scholar] [CrossRef]
- Buss, O.; Gaitanos, T.; Gallmeister, K.; van Hees, H.; Kaskulov, M.; Lalakulich, O.; Larionov, A.B.; Leitner, T.; Weil, J.; Mosel, U. Transport-theoretical Description of Nuclear Reactions. Phys. Rep. 2012, 512, 1–124. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, M.V.; Udias, J.M.; Antonov, A.N.; Caballero, J.A.; Barbaro, M.B.; Moya de Guerra, E. Superscaling predictions for neutrino-induced charged-current charged pion production at MiniBooNE. Phys. Lett. 2012, B711, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, M.V.; Megias, G.D.; González-Jiménez, R.; Moreno, O.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Charged-current inclusive neutrino cross sections in the SuperScaling model including quasielastic, pion production and meson-exchange contributions. J. Phys. 2016, G43, 045101. [Google Scholar] [CrossRef] [Green Version]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; González-Jiménez, R.; Megias, G.D.; Ruiz Simo, I. Electron- versus neutrino-nucleus scattering. J. Phys. G 2020, 47, 124001. [Google Scholar] [CrossRef]
- Rocco, N.; Lovato, A.; Benhar, O. Unified description of electron-nucleus scattering within the spectral function formalism. Phys. Rev. Lett. 2016, 116, 192501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vagnoni, E.; Benhar, O.; Meloni, D. Inelastic Neutrino-Nucleus Interactions within the Spectral Function Formalism. Phys. Rev. Lett. 2017, 118, 142502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocco, N.; Barbieri, C.; Benhar, O.; De Pace, A.; Lovato, A. Neutrino-Nucleus Cross Section within the Extended Factorization Scheme. Phys. Rev. C 2019, 99, 025502. [Google Scholar] [CrossRef] [Green Version]
- Rocco, N.; Nakamura, S.X.; Lee, T.S.H.; Lovato, A. Electroweak Pion-Production on Nuclei within the Extended Factorization Scheme. Phys. Rev. C 2019, 100, 045503. [Google Scholar] [CrossRef] [Green Version]
- Meucci, A.; Giusti, C.; Vorabbi, M. Relativistic descriptions of final-state interactions in charged-current neutrino-nucleus scattering at ArgoNeuT kinematics. Phys. Rev. 2013, D88, 013006. [Google Scholar] [CrossRef] [Green Version]
- Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T. A-dependence of quasielastic charged-current neutrino-nucleus cross sections. Phys. Rev. C 2018, 97, 044616. [Google Scholar] [CrossRef] [Green Version]
- Akbar, F.; Sajjad Athar, M.; Singh, S.K. Neutrino-nucleus cross sections in 12C and 40Ar with KDAR neutrinos. J. Phys. G 2017, 44, 125108. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, M.B.; De Pace, A.; Donnelly, T.W.; Caballero, J.A.; Megias, G.D.; Van Orden, J.W. Asymmetric relativistic Fermi gas model for quasielastic lepton-nucleus scattering. Phys. Rev. C 2018, 98, 035501. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, C.; Rocco, N.; Somà, V. Lepton Scattering from 40Ar and Ti in the Quasielastic Peak Region. Phys. Rev. C 2019, 100, 062501. [Google Scholar] [CrossRef] [Green Version]
- Van Dessel, N.; Jachowicz, N.; Nikolakopoulos, A. Forbidden transitions in neutral and charged current interactions between low-energy neutrinos and Argon. Phys. Rev. C 2019, 100, 055503. [Google Scholar] [CrossRef] [Green Version]
- Van Dessel, N.; Nikolakopoulos, A.; Jachowicz, N. Lepton kinematics in low energy neutrino-Argon interactions. Phys. Rev. C 2020, 101, 045502. [Google Scholar] [CrossRef] [Green Version]
- Butkevich, A.V. Analysis of flux-integrated semi-exclusive cross sections for charged current quasi-elastic neutrino scattering off 40Ar at energies available at the MicroBooNE experiment. arXiv 2021, arXiv:2107.01827. [Google Scholar]
- Franco-Patino, J.M.; Barbaro, M.B.; Caballero, J.A.; Megias, G.D. Theoretical description of semi-inclusive T2K, MinerνA and MicroBooNE neutrino-nucleus data in the relativistic plane wave impulse approximation. arXiv 2021, arXiv:2106.02311. [Google Scholar]
- Lu, X.-G.; Coplowe, D.; Shah, R.; Barr, G.; Wark, D.; Weber, A. Reconstruction of energy spectra of neutrino beams independent of nuclear effects. Phys. Rev. D 2015, 92, 051302. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Amey, J.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; Ashida, Y.; Azuma, Y.; Ban, S.; et al. Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K. Phys. Rev. D 2018, 98, 032003. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.G.; Betancourt, M.; Walton, T.; Akbar, F.; Aliaga, L.; Altinok, O.; Andrade, D.A.; Ascencio, M.; Bellantoni, L.; Bercellie, A.; et al. Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at 〈Eν〉 = 3 GeV. Phys. Rev. Lett. 2018, 121, 022504. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Lu, X.G.; Harewood, L.A.; Wret, C.; Akbar, F.; Andrade, D.A.; Ascencio, M.V.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; et al. Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions. Phys. Rev. D 2020, 101, 092001. [Google Scholar] [CrossRef]
- Moreno, O.; Donnelly, T.W.; Van Orden, J.W.; Ford, W.P. Semi-inclusive charged-current neutrino-nucleus reactions. Phys. Rev. 2014, D90, 013014. [Google Scholar] [CrossRef] [Green Version]
- Van Orden, J.W.; Donnelly, T.W. Nuclear Theory and Event Generators for Charge-Changing Neutrino Reactions. Phys. Rev. C 2019, 100, 044620. [Google Scholar] [CrossRef] [Green Version]
- Sobczyk, J.E.; Nieves, J.; Sánchez, F. Exclusive-final-state hadron observables from neutrino-nucleus multinucleon knockout. Phys. Rev. C 2020, 102, 024601. [Google Scholar] [CrossRef]
- Franco-Patino, J.M.; Gonzalez-Rosa, J.; Caballero, J.A.; Barbaro, M.B. Semi-inclusive charged-current neutrino-nucleus cross sections in the relativistic plane wave impulse approximation. Phys. Rev. C 2020, 102, 064626. [Google Scholar] [CrossRef]
- González-Jiménez, R.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Jachowicz, N.; Megias, G.D.; Niewczas, K.; Nikolakopoulos, A.; Van Orden, J.W.; Udías, J.M. Neutrino energy reconstruction from semi-inclusive samples. arXiv 2021, arXiv:2104.01701. [Google Scholar]
- Dolan, S.; Mosel, U.; Gallmeister, K.; Pickering, L.; Bolognesi, S. Sensitivity of Neutrino-Nucleus Interaction Measurements to 2p2h Excitations. Phys. Rev. C 2018, 98, 045502. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Simo, I.; Amaro, J.E.; Barbaro, M.B.; De Pace, A.; Caballero, J.A.; Megias, G.D.; Donnelly, T.W. Emission of neutron–proton and proton–proton pairs in neutrino scattering. Phys. Lett. 2016, B762, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Pastore, S.; Carlson, J.; Gandolfi, S.; Schiavilla, R.; Wiringa, R.B. Quasielastic lepton scattering and back-to-back nucleons in the short-time approximation. Phys. Rev. C 2020, 101, 044612. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. Measurement of nu(mu) and anti-nu(mu) induced neutral current single pi0 production cross sections on mineral oil at E(nu) O(1- GeV). Phys. Rev. 2010, D81, 013005. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. Measurement of Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at Eν ∼ 1 GeV. Phys. Rev. 2011, D83, 052007. [Google Scholar] [CrossRef] [Green Version]
- Eberly, B.; Aliaga, L.; Altinok, O.; Barrios Sazo, M.G.; Bellantoni, L.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Bustamante, M.J.; et al. Charged pion production in νμ interactions on hydrocarbon at 〈Eν〉 = 4.0 GeV. Phys. Rev. 2015, D92, 092008. [Google Scholar] [CrossRef] [Green Version]
- McGivern, C.L.; Le, T.; Eberly, B.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; et al. Cross sections for νμ and ν¯μ induced pion production on hydrocarbon in the few-GeV region using MINERvA. Phys. Rev. 2016, D94, 052005. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G.J.; et al. First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector. Phys. Rev. 2017, D95, 012010. [Google Scholar] [CrossRef] [Green Version]
- Hernández, E.; Nieves, J.; Vacas, M.J.V. Single π production in neutrino nucleus scattering. Phys. Rev. 2013, D87, 113009. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ruso, L.; Hernández Gajate, E.; Nieves, J.; Sobczyk, J.E.; Vicente Vacas, M.J. One pion production in neutrino nucleon and neutrino nucleus interaction. PoS 2020, 2019, 050. [Google Scholar] [CrossRef]
- Lalakulich, O.; Mosel, U. Pion production in the MiniBooNE experiment. Phys. Rev. 2013, C87, 014602. [Google Scholar] [CrossRef] [Green Version]
- Lalakulich, O.; Mosel, U. Pion production in the T2K experiment. Phys. Rev. 2013, C88, 017601. [Google Scholar] [CrossRef] [Green Version]
- Mosel, U. Pion Production in High-Energy Neutrino Reactions with Nuclei. Phys. Rev. 2015, C91, 065501. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, R.; Niewczas, K.; Jachowicz, N. Pion production within the hybrid relativistic plane wave impulse approximation model at MiniBooNE and MINERvA kinematics. Phys. Rev. D 2018, 97, 013004. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, A.; González-Jiménez, R.; Niewczas, K.; Sobczyk, J.; Jachowicz, N. Modeling neutrino-induced charged pion production on water at T2K kinematics. Phys. Rev. D 2018, 97, 093008. [Google Scholar] [CrossRef] [Green Version]
- Sajjad Athar, M.; Morfín, J.G. Neutrino(antineutrino)–nucleus interactions in the shallow- and deep-inelastic scattering regions. J. Phys. G 2021, 48, 034001. [Google Scholar] [CrossRef]
- Alvarez-Ruso, L.; Ankowski, A.M.; Athar, M.S.; Bronner, C.; Cremonesi, L.; Duffy, K.; Dytman, S.; Friedland, A.; Furmanski, A.P.; Gallmeister, K.; et al. Snowmass 2021 LoI: Neutrino-induced Shallow- and Deep-Inelastic Scattering. 2022 Snowmass Summer Study. arXiv 2020, arXiv:2009.04285. [Google Scholar]
- Bhadra, S.; Blondel, A.; Bordoni, S.; Bravar, A.; Bronner, C.; Caravaca-Rodriguez, J.; Dziewiecki, M.; Feusels, T.; Fiorentini-Aguirre, G.A.; Friend, M.; et al. Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline. arXiv 2014, arXiv:1412.3086. [Google Scholar]
- Belusevic, R.; Rein, D. Neutrino Reactions in the Low Y Region. Phys. Rev. D 1988, 38, 2753–2757. [Google Scholar] [CrossRef]
- Duyang, H.; Guo, B.; Mishra, S.R.; Petti, R. A Precise Determination of (Anti)neutrino Fluxes with (Anti)neutrino-Hydrogen Interactions. Phys. Lett. B 2019, 795, 424–431. [Google Scholar] [CrossRef]
- Munteanu, L.; Suvorov, S.; Dolan, S.; Sgalaberna, D.; Bolognesi, S.; Manly, S.; Yang, G.; Giganti, C.; Iwamoto, K.; Jesús-Valls, C. New method for an improved antineutrino energy reconstruction with charged-current interactions in next-generation detectors. Phys. Rev. D 2020, 101, 092003. [Google Scholar] [CrossRef]
- Hamacher-Baumann, P.; Lu, X.; Martín-Albo, J. Neutrino-hydrogen interactions with a high-pressure time projection chamber. Phys. Rev. D 2020, 102, 033005. [Google Scholar] [CrossRef]
- Abe, K.; Akhlaq, N.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Arihara, T.; Asada, Y.; et al. First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single-π+ production channel containing at least one proton. Phys. Rev. D 2021, 103, 112009. [Google Scholar] [CrossRef]
- Aliaga, L.; Kordosky, M.; Golan, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bravar, A.; Budd, H.; Carneiro, M.F.; et al. Neutrino flux predictions for the NuMI beam. Phys. Rev. D 2016, 94, 092005. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Bonesini, M.; Branca, A.; Brizzolari, C.; Brunetti, G.; Calviani, M.; Capelli, S.; Carturan, S.; Catanesi, M.G.; Charitonidis, N.; et al. NP06/ENUBET annual report for the CERN-SPSC. In Technical Report CERN-SPSC-2020-009. SPSC-SR-268; CERN: Geneva, Swizerland, 2020. [Google Scholar]
- Acerbi, F.; Angelis, I.; Bonesini, M.; Branca, A.; Brizzolari, C.; Brunetti, G.; Calviani, M.; Capelli, S.; Carturan, S.; Catanesi, M.G.; et al. NP06/ENUBET annual report for the CERN-SPSC. In Technical Report CERN-SPSC-2021-013. SPSC-SR-290; CERN: Geneva, Swizerland, 2021. [Google Scholar]
- Abi, B.; Abud, A.A.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adamowski, M.; Adams, D.; Adrien, P.; Adinolfi, M.; Ahmad, Z.; et al. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. JINST 2020, 15, P12004. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; An, R.; Andreopoulos, C.; Ankowski, A.M.; Antonello, M.; Asaadi, J.; Badgett, W.; Bagby, L.; Baibussinov; et al. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv 2015, arXiv:1503.01520. [Google Scholar]
- Amerio, S.; Amoruso, S.; Antonello, M.; Aprili, P.; Armenante, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M. Design, construction and tests of the ICARUS T600 detector. Nucl. Instrum. Meth. A 2004, 527, 329–410. [Google Scholar] [CrossRef]
- Hand, L. A study of 40–90 GeV neutrino interactions using a tagged neutrino beam. In Proceedings of the Second NAL Summer Study, Aspen, Colorado, 9 June–3 August 1969. [Google Scholar]
- Bernstein, R.H.; Borcherding, F.; Jovanovic, D.; Lamm, M.J.; Vannucci, F. A Proposal for a Neutrino Oscillation Experiment in a Tagged Neutrino Line; Technical Report FERMILAB-PROPOSAL-0788; Fermilab: New York, NY, USA, 1988.
- Pontecorvo, B. Tagging direct neutrinos. A first step to neutrino tagging. Lett. Nuovo Cim. 1979, 25, 257–259. [Google Scholar] [CrossRef]
- NUTECH (NeUtrino Time-Tagged bEams with CHerenkov Detectors). Grant MIUR–Bando FARE (2017–2022). Available online: https://fare.miur.it/app.php/en/ (accessed on 1 July 2021).
- Kordas, K.; Bortfeldt, J.; Brunbauer, F.; David, C.; Desforge, D.; Fanourakis, G.; Franchi, J.; Gallinaro, M.; Garcia, F. Progress on the PICOSEC-Micromegas Detector Development: Towards a precise timing, radiation hard, large-scale particle detector with segmented readout. Nucl. Instrum. Meth. A 2020, 958, 162877. [Google Scholar] [CrossRef]
- Lyashenko, A.; Adams, B.; Aviles, M.; Cremer, T.; Ertley, C.D.; Foley, M.R.; Minot, M.J.; Popecki, M.A.; Stochaj, M.E.; Worstell, W.A.; et al. Performance of Large Area Picosecond Photo-Detectors (LAPPDTM). Nucl. Instrum. Meth. A 2020, 958, 162834. [Google Scholar] [CrossRef] [Green Version]
- Geer, S. Neutrino beams from muon storage rings: Characteristics and physics potential. Phys. Rev. 1998, D57, 6989–6997. [Google Scholar] [CrossRef] [Green Version]
- De Rujula, A.; Gavela, M.; Hernandez, P. Neutrino oscillation physics with a neutrino factory. Nucl. Phys. B 1999, 547, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Abrams, R.J.; Agarwalla, S.K.; Alekou, A.; Andreopoulos, C.; Ankenbrandt, C.M.; Antusch, S.; Apollonio, M.; Aslaninejad, M.; Back, J.; Ballett, P.; et al. International Design Study for the Neutrino Factory, Interim Design Report. arXiv 2011, arXiv:1112.2853. [Google Scholar]
- Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; Song, Y.P.; Tang, J.Y.; Li, Z.H.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R. et al. Demonstration of cooling by the Muon Ionization Cooling Experiment. Nature 2020, 578, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Ahdida, C.; Appleby, R.; Bartmann, W.; Bauche, J.; Calviani, M.; Gall, J.; Gilardoni, S.; Goddard, B.; Hessler, C.; Huber, P.; et al. nuSTORM at CERN: Feasibility Study; Technical Report CERN-PBC-REPORT-2019-003; CERN: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Agostino, L.; Andrieu, B.; Asfandiyarov, R.; Autiero, D.; Bésida, O.; Bay, F.; Bayes, R.; Blebea-Apostu, A.M.; Blondel, A.; Bogomilov, M.; et al. LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment. arXiv 2014, arXiv:1409.4405. [Google Scholar]
- McConkey, N. SBND: Status of the Fermilab Short-Baseline Near Detector. J. Phys. Conf. Ser. 2017, 888, 012148. [Google Scholar] [CrossRef] [Green Version]
- Dellacasa, G.; Ramello, L.; Scalas, E.; Sitta, M.; Ahmad, N.; Ahmad, S.; Ahmad, T.; Bari, W.; Irfan, M.; Zafar, M.S.; et al. ALICE Time Projection Chamber: Technical Design Report; Technical Design Report CERN-LHCC-2000-001, CERN-OPEN-2000-183, ALICE-TDR-7; ALICE, CERN: Geneva, Switzerland, 2000. [Google Scholar]
- Barbi, M.; Berardi, V.; Bhadra, S.; Boyd, S.; Bubak, A.; Buchowicz, A.; Buizza Avanzini, M.; Catanesi, M.G.; Cederkall, J.; Chinchanikar, S.S.; et al. Proposal for a Water Cherenkov Test Beam Experiment for Hyper-Kamiokande and Future Large-Scale Water-Based Detectors; Technical Report CERN-SPSC-2020-005, SPSC-P-365; CERN: Geneva, Switzerland, 2020. [Google Scholar]
- Hiramoto, A.; Suzuki, Y.; Ali, A.; Aoki, S.; Berns, L.; Fukuda, T.; Hanaoka, Y.; Hayato, Y.; Ichikawa, A.K.; Kawahara, H.; et al. First measurement of ν¯μ and νμ charged-current inclusive interactions on water using a nuclear emulsion detector. Phys. Rev. D 2020, 102, 072006. [Google Scholar] [CrossRef]
- Barish, S.J.; Derrick, M.; Dombeck, T.; Hyman, L.G.; Jaeger, K.; Musgrave, B.; Schreiner, P.; Singer, R.; Snyder, A.; Barnes, V.E.; et al. Study of Neutrino Interactions in Hydrogen and Deuterium: Inelastic Charged Current Reactions. Phys. Rev. D 1979, 19, 2521. [Google Scholar] [CrossRef]
- Allasia, D.; Angelini, C.; van Apeldoorn, G.; Baldini, A.; Barlag, S.M.; Bertanza, L.; Bobisut, F.; Capiluppi, P.; van Dam, P.H.A.; Faccini-Turluer, M.L.; et al. Investigation of exclusive channels in neutrino/anti-neutrino deuteron charged current interactions. Nucl. Phys. B 1990, 343, 285–309. [Google Scholar] [CrossRef]
- Alvarez-Ruso, L.; Bellantoni, L.; Bross, A.; Cremonesi, L.; Duffy, K.; Dytman, S.; Fields, L.; Gonzalez Diaz, D.; Gorshteyn, M.; Hill, R.; et al. LoI-Neutrino Scattering Measurements on Hydrogen and Deuterium; Technical Report SNOWMASS2021; Fermilab: New York, NY, USA, 2020.
- Snowmass 2021. Available online: http://snowmass21.org/ (accessed on 1 July 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branca, A.; Brunetti, G.; Longhin, A.; Martini, M.; Pupilli, F.; Terranova, F. A New Generation of Neutrino Cross Section Experiments: Challenges and Opportunities. Symmetry 2021, 13, 1625. https://doi.org/10.3390/sym13091625
Branca A, Brunetti G, Longhin A, Martini M, Pupilli F, Terranova F. A New Generation of Neutrino Cross Section Experiments: Challenges and Opportunities. Symmetry. 2021; 13(9):1625. https://doi.org/10.3390/sym13091625
Chicago/Turabian StyleBranca, Antonio, Giulia Brunetti, Andrea Longhin, Marco Martini, Fabio Pupilli, and Francesco Terranova. 2021. "A New Generation of Neutrino Cross Section Experiments: Challenges and Opportunities" Symmetry 13, no. 9: 1625. https://doi.org/10.3390/sym13091625
APA StyleBranca, A., Brunetti, G., Longhin, A., Martini, M., Pupilli, F., & Terranova, F. (2021). A New Generation of Neutrino Cross Section Experiments: Challenges and Opportunities. Symmetry, 13(9), 1625. https://doi.org/10.3390/sym13091625