New Features in Crystal Orientation and Phase Mapping for Transmission Electron Microscopy
Abstract
:1. Introduction
2. Template Matching: Practical Aspects
2.1. Algorithm Improvements
2.2. Background Subtraction
3. Raw Pattern Size
4. Orientation Ambiguities
4.1. Detecting Ambiguities
4.2. Correcting Ambiguities
- Calculating the local degree of ambiguity.
- For ambiguous orientations, comparing the local orientation with that of neighbouring pixels.
- Exchanging the orientation with the one corresponding to a 180° rotation around the closest zone axis. Of course, the ‘corrected’ orientation is kept only in the case of improvement (i.e., decrease of disorientation).
5. Retrieving Through-Thickness Information
5.1. 3D Information Obtained from a Single Scan
5.2. 3D Reconstruction from a Tilt Series
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rauch, E.F.; Véron, M. Automated Crystal Orientation and Phase Mapping in TEM. Mater. Charact. 2014, 98, 1–9. [Google Scholar] [CrossRef]
- Rauch, E.F.; Portillo, J.; Nicolopoulos, S.; Bultreys, D.; Rouvimov, S.; Moeck, P. Automated Nanocrystal Orientation and Phase Mapping in the Transmission Electron Microscope on the Basis of Precession Electron Diffraction. Z. Krist. 2010, 225, 103–109. [Google Scholar] [CrossRef] [Green Version]
- NanoMEGAS SPRL. Available online: https://nanomegas.com/ (accessed on 29 July 2021).
- Mu, X.; Kobler, A.; Wang, D.; Chakravadhanula, V.S.K.; Schlabach, S.; Szabó, D.V.; Norby, P.; Kübel, C. Comprehensive Analysis of TEM Methods for LiFePO4/FePO4 Phase Mapping: Spectroscopic Techniques (EFTEM, STEM-EELS) and STEM Diffraction Techniques (ACOM-TEM). Ultramicroscopy 2016, 170, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Robert, D.; Bayle-Guillemaud, P.; Rouvière, J.L.; Rauch, E.F.; Martin, J.F.; Colin, J.F.; Bertin, F.; Cayron, C. Confirmation of the Domino-Cascade Model by LiFePO4/FePO4 Precession Electron Diffraction. Chem. Mater. 2011, 23, 4515–4524. [Google Scholar] [CrossRef]
- Guo, W.; Meng, Y.; Zhang, X.; Bedekar, V.; Bei, H.; Hyde, S.; Guo, Q.; Thompson, G.B.; Shivpuri, R.; Zuo, J.; et al. Extremely Hard Amorphous-Crystalline Hybrid Steel Surface Produced by Deformation Induced Cementite Amorphization. Acta Mater. 2018, 152, 107–118. [Google Scholar] [CrossRef]
- Hart, M.J.; Bassiri, R.; Borisenko, K.B.; Véron, M.; Rauch, E.F.; Martin, I.W.; Rowan, S.; Fejer, M.M.; MacLaren, I. Medium Range Structural Order in Amorphous Tantala Spatially Resolved with Changes to Atomic Structure by Thermal Annealing. J. Non-Cryst. Solids 2016, 438, 10–17. [Google Scholar] [CrossRef]
- Santiago, U.; Velázquez-Salazar, J.J.; Sanchez, J.E.; Ruiz-Zepeda, F.; Ortega, J.E.; Reyes-Gasga, J.; Bazán-Díaz, L.; Betancourt, I.; Rauch, E.F.; Veron, M.; et al. A Stable Multiply Twinned Decahedral Gold Nanoparticle with a Barrel-like Shape. Surf. Sci. 2016, 644, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, J.; Mu, X.; Wang, D.; Zhang, B.; Shen, Y.; Lin, M.; Kübel, C.; Huang, Y.; Chen, H. Solution Growth of Ultralong Gold Nanohelices. ACS Nano 2017, 11, 5538–5546. [Google Scholar] [CrossRef]
- Wang, A.; Leff, A.C.; Taheri, M.L.; Graef, M.D. A Statistical Dictionary Approach to Automated Orientation Determination from Precession Electron Diffraction Patterns. Microsc. Microanal. 2015, 21, 1247–1248. [Google Scholar] [CrossRef] [Green Version]
- Nicolopoulos, S.; Bultreys, D.; Rauch, E. Precession Coupled Orientation/Phase Mapping on Nanomaterials with TEM Cs Microscopes. Acta Crystallogr. A Found. Crystallogr. 2012, 68, S104. [Google Scholar] [CrossRef] [Green Version]
- Rauch, E.F.; Véron, M. Crystal Orientation Angular Resolution with Precession Electron Diffraction. Microsc. Microanal. 2016, 22, 500–501. [Google Scholar] [CrossRef] [Green Version]
- Rauch, E.; Renou, G.; Veron, M. Reflection profile and angular resolution with Precession Electron Diffraction. In European Microscopy Congress 2016: Proceedings; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2016; pp. 665–666. ISBN 978-3-527-80846-5. [Google Scholar]
- Wu, G.; Zaefferer, S. Advances in TEM Orientation Microscopy by Combination of Dark-Field Conical Scanning and Improved Image Matching. Ultramicroscopy 2009, 109, 1317–1325. [Google Scholar] [CrossRef]
- Morawiec, A.; Bouzy, E. On the Reliability of Fully Automatic Indexing of Electron Diffraction Patterns Obtained in a Transmission Electron Microscope. J. Appl. Cryst. 2006, 39, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Eggeman, A.S.; Krakow, R.; Midgley, P.A. Scanning Precession Electron Tomography for Three-Dimensional Nanoscale Orientation Imaging and Crystallographic Analysis. Nat. Commun. 2015, 6, 7267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobler, A.; Kübel, C. Towards 3D Crystal Orientation Reconstruction Using Automated Crystal Orientation Mapping Transmission Electron Microscopy (ACOM-TEM). Beilstein J. Nanotechnol. 2018, 9, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Schmidt, S.; Poulsen, H.F.; Godfrey, A.; Liu, Z.Q.; Sharon, J.A.; Huang, X. Three-Dimensional Orientation Mapping in the Transmission Electron Microscope. Science 2011, 332, 833–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, Á.K.; Rauch, E.F.; Lábár, J.L. Highlighting Material Structure with Transmission Electron Diffraction Correlation Coefficient Maps. Ultramicroscopy 2016, 163, 31–37. [Google Scholar] [CrossRef]
- Valery, A.; Rauch, E.F.; Clément, L.; Lorut, F. Retrieving Overlapping Crystals Information from TEM Nano-Beam Electron Diffraction Patterns: ACOM-TEM & OVERLAPPING CRYSTALS. J. Microsc. 2017, 268, 208–218. [Google Scholar] [CrossRef]
- Rauch, E.F.; Véron, M. Methods for Orientation and Phase Identification of Nano-Sized Embedded Secondary Phase Particles by 4D Scanning Precession Electron Diffraction. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Valery, A.; Rauch, E.F.; Pofelski, A.; Clement, L.; Lorut, F. Dealing with Multiple Grains in TEM Lamellae Thickness for Microstructure Analysis Using Scanning Precession Electron Diffraction. Microsc. Microanal. 2015, 21, 1243–1244. [Google Scholar] [CrossRef] [Green Version]
- Rauch, E.F.; Véron, M. Virtual Dark-Field Images Reconstructed from Electron Diffraction Patterns. Eur. Phys. J. Appl. Phys. 2014, 66, 10701. [Google Scholar] [CrossRef]
- Wang, S. Application of Diffraction Mapping on Crystal Grain Imaging. Microsc. Microanal. 2013, 19, 708–709. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Zuo, J.-M. Three-Dimensional Nanostructure Determination from a Large Diffraction Data Set Recorded Using Scanning Electron Nanodiffraction. IUCrJ 2016, 3, 300–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, P.; Zhou, X.; Das, S.M.; Viganò, N.; Lhuissier, P.; Herbig, M.; Ludwig, W.; Rauch, E. Reconstructing Grains in 3D through 4D Scanning Precession Electron Diffraction. Microsc. Microanal. 2021, 27, 2494–2495. [Google Scholar] [CrossRef]
- Mastronarde, D.N. Fiducial Marker and Hybrid Alignment Methods for Single- and Double-axis Tomography. In Electron Tomography; Frank, J., Ed.; Springer: New York, NY, USA, 2006; pp. 163–185. ISBN 978-0-387-31234-7. [Google Scholar]
- Goris, B.; Roelandts, T.; Batenburg, K.J.; Mezerji, H.H.; Bals, S. Advanced Reconstruction Algorithms for Electron Tomography: From Comparison to Combination. Ultramicroscopy 2013, 127, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Herbig, M.; Choi, P.; Raabe, D. Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 2015, 153, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Harris, C.J.; Genova, A.; Schwartz, J.; Jiang, Y.; Hovden, R. Tomviz: Open Source Platform Connecting Image Processing Pipelines to GPU Accelerated 3D Visualization. Microsc. Microanal. 2019, 25, 408–409. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauch, E.F.; Harrison, P.; Zhou, X.; Herbig, M.; Ludwig, W.; Véron, M. New Features in Crystal Orientation and Phase Mapping for Transmission Electron Microscopy. Symmetry 2021, 13, 1675. https://doi.org/10.3390/sym13091675
Rauch EF, Harrison P, Zhou X, Herbig M, Ludwig W, Véron M. New Features in Crystal Orientation and Phase Mapping for Transmission Electron Microscopy. Symmetry. 2021; 13(9):1675. https://doi.org/10.3390/sym13091675
Chicago/Turabian StyleRauch, Edgar F., Patrick Harrison, Xuyang Zhou, Michael Herbig, Wolfgang Ludwig, and Muriel Véron. 2021. "New Features in Crystal Orientation and Phase Mapping for Transmission Electron Microscopy" Symmetry 13, no. 9: 1675. https://doi.org/10.3390/sym13091675
APA StyleRauch, E. F., Harrison, P., Zhou, X., Herbig, M., Ludwig, W., & Véron, M. (2021). New Features in Crystal Orientation and Phase Mapping for Transmission Electron Microscopy. Symmetry, 13(9), 1675. https://doi.org/10.3390/sym13091675